gin DC80S. -
1. AGENCY Ut ONLY (Loove Slank) 2. REPORT DATE %Wmmmsm
5 Dec 89 to 5 Dec 90 na
§ ¢ TMEANDBUBTME Ada Compiler Validation Summary Report:"fartan & RADING MABERS

Laboratories Incorporated, Tartan Ada VMS/C30, Version 2.2,
VAX Station 3100 (host) to 320c30 on TI Application Board (targer:)
891205T1.10260

. AUTHOR(S}
TABG-AVF ,
Ottobrunn, FEDERAL REPUBLIC OF GERMANY

. ORGANIZATION NAME(S) AND ADDRESS(ES - . ’ 8. PERFORMING ORGANIZA'
IABG-AVF, Industrieanl?gen-Becrieb)sgeselschaft RERGAT MABER T
Dept. SZT .

Einsteinstrasse 20

D-8012 Ottobrunn L AVF-IABG-058

FEDERAL REPUBLIC OF' GERMANY
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
Ada Joint Program Office REPORT NUMBER

United States Department of Defense '
Washington, D.C. 20301-3081

1. SUPPLEMENTARY NOTES

12a. DISTRBUTIONAVALABLITY STATEMENT 12b. ISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Yartan Laboratories Incorporated,Tartan Ada VMS/C30 Version 2.2,0ttobrunn West Germany,
VAX Station 3100 under VAX/VMS 5.1 B (Host & Target), ACVC1.10

, DTIC

14.UBECTTERMS Ada programming language, Ada Compiler Validation 15. NUMBER OF PAGES
Summary Report, Ada Compiler Validation Capability, Validation
Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- 16. PRICE CODE

UNCLASSIFIED
NSN 7540-01-280-8500

TD-1815A, Ada Joint Program Office
i' E‘!mlﬂﬂilﬁiliai ' 3 St 0. LITATION OF ABSTRACT

AVF Control Number:

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: #891205I11.10260
vFARTAN LABORATORIES INCORPORATED;
Tartan Ada VHS/C3Q,Version 2.2
VAX Station 3100 to 320C30 on TI Applica{ion Board

Completion of On-Site Testing:
5 December 1989

Prepared By:
IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn
West Germany

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

<
P>l

AVF-IABG-058

Ada Compiler Validation Summary Report:

Compiler Name: Tartan Ada VMS/C30 Version 2.2
Certificate Number: #891205I1.10260

Host: VAX Station 3100 under VAX/VMS 5.1B
Target: 320C30 on TI Applicétion Board

Testing completed 5 December 1989 using ACVC 1.10.

This report has been reviewed and is approved.

o Ll

Dr. S. Heilbrunner
IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn
West Germany

RzOLLL.

Ada Validat 9)‘" /ganization

Institute fo fense Analyses
Alexandria VA 22311

_UA 3t

~Ada Joint Program Office

PR RY 2

coPY
INSPECTER

6

Dr. John Solomond

Director A00953199 Por ‘;r

Department of Defense NTIS GRAXI

Washington DC 20301 DTIC TASB 0
Unannounced 0O

Justification]

By
__D_irstr’fbut_l_on/ o
Avallatilitv (Ccdes

T lAveti end/or |
Dist Special

A/‘

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . v v v v v v e e e e e e e v v 1
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT . 2
1.3 REFERENCES . .) 3
1.4 DEFINITION OF TERMS . 3
1.5 ACVC TEST CLASSES . 4

CHAPTER 2 CONFIGURATION INFORMATION . . . = v v v v v o v . T
2.1 CONFIGURATION TESTED . . 7
2.2 THPLEMENTATION CHARACTERISTICS 8

CHAPTER 3 TEST INFORMATION + + v v v v v v v v . .13
3.1 TEST RESULTS . . . S
3.2 SUMHARY OF TEST RESULTS BY CLASS 13
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 14
3.4 WITHDRAWN TESTS . . » v v v v o o o v v v v v . .14
3.5 INAPPLICABLE TESTS 14
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 18
3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation + +v « « v « « + . . .19
3.7.2 Test Method « « « v « v « . . . 18
3.7.3 Test Site & . i e e e e e e e e . e . 20

APPENDIZ A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIZ D YITHDRAWN TESTS

APPENDIX E COMPILER AND LINKER OPTIONS

INTRODUCTION

CHAPTER 1

INTRODUCTION

“:>This Validation Summary Report (VSR) describes the -extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms wused within it and thoroughly
reports the results tgnq this compiler using the Ada Compiler
Validation Capability, (ACVC). ™SAn Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is

not in the Standard. -

(::_~‘E;;;—Eﬁbugh all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies~-for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies obsefved during the process of testing this compiler are

C:j__aixan.ignshis report.
The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results:~ The purpose of validating is to ensure conformity
of the compiler to the Ad§ Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language construcfs. The testing also identifies behavior that is
implementation dependent, but 1is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at

compile time, at link tim ~,___3‘rl~c_l'__g_\g_g__:1,,ng‘_execut:ion. //,_
P—— V/;
<R)(_/

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

[,

INTRODUCTION

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by IABG mbH, Abt SZT according to
procedures established by the Ada Joint Program Office and administered by
the Ada Validation Organization (AVO).

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this wvalidation apply only to the
computers, operating systems, and compiler versions identified 1in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has nc nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

[AW

INTRODUCTION
1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the

Commentary point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd. '

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.
Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF 1is responsible for
conducting <compiler validations according ¢to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a wuniform process for validation of Ada
compilers. The AVQ provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

INTRODUCTION

Inapplicable An ACVC test that wuses features of the language that a
test compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erronecus use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects 1illegal language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada prograns
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. 1If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
‘implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it 1is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the nain
program are elaborated. 1In some cases, an implementation may 1legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
tests. However, some tests contain values that require the test to be

o

INTRODUCTION

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is

provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test tc an implementation is
considered each time the implementation 1is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, 1is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

T R R R I EEEEE———EEE——

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

following configuration:

Compiler: Tartan Ada VMS/C30 Version 2.2
ACVC Version: 1.10
Certificate Number: #891205I11.10260
Host Computer:
Machine: VAX Station 3100
Operating System: VAX/VMS 5.1B

Memory Size: 8 MB

Target Computer:

Operating System: bare machine

The candidate compilation system for this validation was tested

Machine: 320C30 on TI Application Board

Memory Size: 512K x 32 bit words

the

CONFIGURATION INFORMATION

2.2 TIWMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests 1in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests DS5A03A..H (8
tests).)

3} The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 10
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

1) This implementation supports the additional predefined type
LONG_FLOAT in the package STANDARD. (See tests B86001T..Z (7
tests).) .

¢. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

1) None of the default initialization expressions for record

components are evaluated before any value is
checked for membership in a component's subtype. (See test
C32117A.)

2) Assignments for subtypes are performed with the same precision
as the base type. ({(See test C35712B.)

CONFIGURATION INFORMATION

3) This implementation uses no extra bits for extra precision
and uses all extra bits for sxtra range. (See test C35903A.)

4) NUMERIC_ERROR 1is raised when an integer literal operand in a
comparison or membership test is outside the range of the base
type. (See test C45232A.)

5) No exception 1is raised when a literal operand in a fixed-
point comparison or membership test is outside the range of
the base type. (See test C45252A.)

6) Underflow 3is not gradual. (See tests C45524A..Z (26
tests).)

Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

1) The method used for rounding to 1integer 1is round towards
positive infinity . (See tests C46012A..Z (26 tests).)

2) The method used for rounding to longest integer 1is round
towards positive infinity. (See tests C46012A..Z (26 tests).)

3) The method used for rounding to integer in static universal
real expressions 1is round towards positive infinity. (See
test C4A014A.)

Array types.

An implementation 1is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX_INT components raises NUMERIC_ERROR for
one dimensional array types and two dimensional array tvpes ,
and no exception for one dimensional array subtypes and two
dimensional array subtypes. (See test C36003A.)

2) NUMERIC_ERROR is raised when an array type with
TNTEGER 'LAST + 2 components 1is declared. (See test
C36202A.)

3)

4)

5)

6)

7)

8)

CONFIGURATION INFORMATION

NUMERIC_ERROR is raised when an array type with
SYSTEM.MAX_INT + 2 components 1s declared. (See test
C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC_ERROR when the array type is declared. {See
test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC_ERROR when the array
type 1is declared and exceeds INTEGER'LAST. (See test
C52104Y.) '

In assigning one-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

A null array with one dimension of length greater
than INTEG ('LAST may raise NUMERIC_ERROR or CONSTRAINT_ERROR
either when declared or assigned. Alternatively, an implemen-
tation may accept the declaration. However, lengths must
match in array slice assignments. This implementation raises
NUMERIC_ERROR when the array type is declared. (See
test E52103Y.)

Discriminated types.

1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT_ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

Aggregates.

1) In the evaluation of a multi~dimensional aggregate, the test
results indicate that all choices are evaluated Dbefore
checking against the index type. (See tests (432072 and
C432078B.)

2) In the evaluation of an aggregate containing subaggregates,

not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

CONFIGURATION INFORMATION

3) CONSTRAINT_ERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-null
aggregate does not belong to an 1index subtype. (See test
E43211B.)

Pragmas.

1) The pragma INLINE is supported for functions and
procedures. (See tests LA30C4A..B (2 tests), EA3004C..D (2
tests), and CA3004E..F (2 tests).)

Generics.

This compiler enforces the following two rules concerning
declarations and proper bodies which are individual compilation
units: :

o generic bodies must be compiled and completed before their
instantiation.

o recompilation of a generic body or any of 1its transitive
subunits makes all units obsolete which instantiate that
generic body.

These rules are enforced whether the compilation units are 1in
separate compilation files or not. AI408 and AI506 allow this
behaviour.

1) Generic specifications and bodies can be compiled
in separate compilations. (See tests CA1012A, <CA2009¢C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be
compiled 1in separate compilations. (See tests CA1012A and
CA2009F.)

3) Generic 1library subprogram specifications and bodies can be
compiled in separate compilations. {See test CAl012A.)

4) Generic non-library package bodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

5} Generic non-library subprogram bodies can be
compiled in separate compilations from their stubs. (See test
CA2009F.)

6) Generic unit bodies and their subunits can be

compiled in separate compilations. (See test CA3011A.)

il

8)

9)

CONFIGURATION INFORMATION

Generic package declarations and bodies can be
compiled in separate compilations. (See tests CA2009C,
BC3204C, and BC3205D.)

Generic library package specifications and bodies can be
compiled in separate compilations. (See tests
BC3204C and BC3205D.)

Generic¢ unit bodies and their subunits can be
compiled in separate compilations. (See test CA3011A.)

Input and output.

1)

2)

3)

The package SEQUENTIAL_IO can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C, EE2201D,
and EE2201E.)

The package DIRECT_IO0O can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101H, EE2401D,
and EE2401G.)

The director, AJPO, has determined (AI-00332) that every call
to OPEN and CREATE must raise USE_ERROR or NAME_ERROR if file
input/output is not supported. This implementation exhibits
this behavior for SEQUENTIAL_IO, DIRECT_IO, and TEXT_IO.

12

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 619 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing except for
285 executable tests that use floating-point precision exceeding
that supported by .the implementation, and for 238 executable tests
that use file operations not supported Dby the implementation.
Modifications to the code, processing, or grading for 81 tests were
required to successfully demonstrate the test objective. {See section
3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS
' RESULT TEST CLASS TOTAL
A B c D B L

Passed 129 1128 1719 16 16 46 3054
Inapplicable 0 10 596 1 12 0 619
Vithdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 & 71 8 9 10 11 12 13 14
Passed 192 547 485 242 171 99 159 332 133 36 252 330 76 3054
N/A 20 102 195 6 1 0 T 0 4 0 0 39 245 619
Wdrn 1 1 o0 o o0 o0 0 2 0 0 1 35 4 44
TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 VWITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10
at the time of this validation:

E28005¢C A39005G6 B97102E C97116A BC30098 CD2A62D

CD2A63A4 CD2A63B CD2A63C CD2A63D CD2RA66A CD27A668B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2AT73D
CD2AT76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84N CD2A84M CD50110 CD2B15¢C €D7205¢C CD2D11B
CD50078 ED7004B ED7005C ED7005D ED7006C ED7006D

CD7105A CD7203B CD7204B CD7205D CE2107I CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use -of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 619 tests were inapplicable for the
reasons indicated:

a. The following 285 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX_DIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)

TEST INFORMATION

C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..2 (21 tests)
C45524F..7 (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT_FLOAT.

The following 16 tests are not applicable because this
implementation does not support a predefined type SHORT_INTEGER:

C45231B C45304B C455028B C455038 455048
C45504E C45611B C45513B C45614B C45631B
C45632B B52004E C55B078B B55B09D B86001V
CDT101E

The following 16 tests are not applicable because this
implementation does not support a predefined type LONG_INTEGER:

€45231¢C C45304C €45502¢C C45503C €45504C

C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C B86001W
CD7101F

C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX_MANTISSA is less than 32.

D64005G is not applicable because this implementation does not
support nesting 17 levels of recursive procedure calls.

C86001F is not applicable because, for this implementation, the
package TEXT_IO is dependent upon package SYSTEM. This test re-
compiles package SYSTEM, making package TEXT_IO, and hence
package REPORT, obsolete.

B86001X, <(C45231D, and CD7101G are not applicable because this
implementation supports no predefined integer type with a name
other than INTEGER, LONG_INTEGER, or SHORT_INTEGER.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT. :

CA2009A, <CA2009C, CA2009F and CA2009D are not applicable because
this compiler creates dependencies between generic bodies, and
units that instantiate them (see section 2.2i for rules and
restrictions concerning generics).

TEST INFORMATION

CD1009C, CD2A41A..E (5 tests), and CD2A42A..J (10 tests) are not
applicable because this implementation imposes restrictions on
'SIZE length clauses for floating point types.

CD2A61E, CD2A61G, and CD2A61I are not applicable because this
implementation imposes restrictions on 'SIZE length clauses for
array types.

CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation imposes restrictions on 'SIZE length
clauses for access types.

CD2A91A..E (5 tests) are not applicable because 'SIZE length
clauses for task types are not supported.

CD2B11G is not applicable because 'STORAGE_SIZE representation
clauses are not supported for access types where the designated
type is a task type.

CD2B15B 1is not applicable because a collection size larger than
the size specified was allocated.

The following 238 tests are inapplicable because sequential, text,
and direct access files are not supported:

CE2102A..C (3 tests) CE2102G..H (2 tests)
CE2102K CE2102N..Y (12 tests)
CE2103C..D (2 tests) CE2104A..D (4 tests)
CE2105A..B (2 tests) CE2106A..B (2 tests)
CE2107A..H (8 tests) CE2107L

CE2108A..B (2 tests) CE2108C..H (6 tests)
CE2109A..C (3 tests) CE2110A..D (4 tests)
CE2111A..I (9 tests) CE2115A..B (2 tests)
CE2201A..C (3 tests) CE2201F..N (9 tests)
CE2204A..D (4 tests) CE2205A

CE2208B CE2401A..C (3 tests)
CE2401E..F (2 tests) CE2401H..L (5 tests)
CE2404A..B (2 tests) CE2405B

CE2406A CE2407A..B (2 tests)
CE2408A..B (2 tests) CE2409A..B (2 tests)
CE2410A..B (2 tests) CE2411A

CE3102A..B (2 tests) EE3102C

CE3102F..H (3 tests) CE3102J..K (2 tests)
CE3103A CE3104A..C (3 tests)
CE3107B CE3108A..B (2 tests)
CE3109A CE3110A

CE3111A..B (2 tests) CE3111D..E (2 tests)
CE3112A..D (4 tests) CE3114A..B (2 tests)
CE3115A EE3203A

16

TEST INFORMATION

CE3208a EE3301B

CE3302A CE3305A

CE3402A EE3402B

CE3402C..D (2 tests) CE3403A..C (3 tests)
CE3403E..F (2 tests) CE3404B..D (3 tests)
CE3405A EE3405B

CE3405C..D (2 tests) CE3406A..D (4 tests)
CE3407A..C (3 tests) CE3408A..C (3 tests)
CE3409A CE3409C..E (3 tests)
EE3409F CE3410A

CE3410C..E (3 tests) EE3410F

CE3411A CE3411C

CE3412A EE3412C

CE3413A CE3413C

CE3602A..D (4 tests) CE3603A

CE3604A..B (2 tests) CE3605A..E (5 tests)
CE3606A..B (2 tests) CE3704A..F (6 tests)
CE3704M..0 (3 tests) CE3706D

CE3706F..G (2 tests) CE3804A..P (16 tests)
CE3805A..B (2 tests) CE3806A..B (2 tests)
CE3806D..E (2 tests) CE3806G..H (2 tests)
CE3905A..C (3 tests) CE3905L

CE3906A..C (3 tests) CE3906E..F (2 tests)

These tests were not processed because their inapplicability can
be deduced from the result of other tests.

Tests CE2103A..B (2 tests) and CE3107A raise USE_ERROR although
NAME_ERROR is expected. These tests report FAILED but they were
graded not applicable because this implementation does not support
permanent files.

EE2201D, EE2201E, EE2401D, EE2401G are inapplicable because
sequential, text, and direct access files are not supported.

17

TEST INFORMATION

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases vwhere
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 79 tests.

a. The following tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B24007A B24009A B25002B B32201A B34005N
B34005T B34007H B35701A B36171A B36201A B37101A
B37102A B37201A B37202A B37203A B373022 B38003A
B38003B B38008A B38008B B38009A B38009B B38103A
B38103B B38103C B38103D B38103E B43202C B44002a
B48002A B48002B B48002D B48002E B48002G B48003E
B49003A B49005A B49006A B49007A B49009A B4A010C
BS4A20A B54A25A B58002A B58002B B59001A B59001C
B59001I B62006C B67001A B67001B B67001C B67001D
B74103E B74104A B85007C B91005A B95003R B95007B
B95031A B95074E BC1002A BC1109A BC1109C BC1206A
BC2001E BC3005B BC3009C BD5005B

b. For the two tests BC3204C and BC3205D, the compilation order was
changed to

BC3204C0, C1, C2, C3M, C4, C5, C6, C3M
and
BC3205D0, D2, D1M

respectively. This change was necessary because of the compiler's
rules for separately compiled generic units (see section 2.2i for
rules and restrictions concerning generics). When processed in
this order the expected error messages were produced for BC3204C2Y
and BC3205D1NM.

¢. The two tests BC3204D and BC3205C consist of several compilation
units each. The compilation units for the main procedures are
near the beginning of the files. When processing these files
unchanged, a 1link error is reported instead of the expected
compiled generic units. Therefore, the compilation files were
modified by appending copies of the main procedures to the end of

13

TEST INFCRIATION

these files. When processed, the expected error messages were
generated by the compiler.

d. Tests C39005A, CD7004C, CD7005E and CD7006E wrongly presume an
order of elaboration of the library unit bodies. These tests were
modified to include a PRAGMA ELABORATE (REPORT);:

e. Test E28002B checks that predefined or unrecognized pragmas may
have arguments invelving overloaded identifiers without -enough
contextual information to resolve the overloading. It also checks
the correct processing of pragma LIST. For this implementation,
pragma LIST is only recognised if the compilation file is compiled
without errors or warnings. Hence, the test was modified to
demonstrate the correct processing of pragma LIST.

For this implementation, the required support package specification,
SPPRT13SP, was rewritten to provide constant values for the function names.

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the Tartan Ada Sun/C30 Version 2.2 compiler was submitted to the AVF
by the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the
compiler exhibited the expected behavior on all inapplicable tests. The
applicant certified that testing results for the computing system of this
validation would be identical to the ones submitted for review prior to
validation.

3.7.2 Test Method

Testing of the Tartan Ada VMS/C30 Version 2.2 compiler using ACVC
Version 1.10 was conducted by IABG on the premises of TARTAN. The
configuration in which the testing was performed is described by the
following designations of hardware and software components:

Host Computer:

Machine: VAX Station 3100
Operating System: VAX/VMS 5.1B
Memory Size: 8 MB

Target Computer:
Machine: 320C30 on TI Application Board
Operating System: bare machine
Memory Size: 512K x 32 bit words

19

TEST INFORMATION

Compiler:
Tartan Ada VMS/C30 Version 2.2

The original ACVC was customized prior to the validation visit in order to
remove all withdrawn tests, inapplicable I/0 tests and tests requiring
unsupported floating point precisions. Tests that make use of
implementation specific values were also customized. Tests requiring
modifications during the prevalidation testing were modified accordingly.

A tape containing the customized ACVC was read by the host computer.

After the test files were loaded to disk, the full set of tests was
compiled and 1linked. All executable tests were transferred via an RS232
line to the target computer where they were run. Results were transferred
to the host computer in the same way. The results were then transferred via
Ethernet to a SUN 3/60, where they were evaluated. Archiving was done on
the host computer.

The compiler was tested using command scripts ©provided by TARTAN
LABORATORIES INCORPORATED and reviewed by the wvalidation team. The
compiler was tested using no option settings. All chapter B tests were
compiled with the listing option on (i.e. /LIST). The linker was called
with the command

ALBC30 LINK <(testname>
The compiler was called with the command

ADAC30 <(testname>
3.7.3 Test Site

Testing was conducted at TARTAN LABORATORIES INCORPORATED, Pittsburgh and
was completed on 5 December 1989.

20

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

TARTAN LABORATORIES INCORPORATED has submitted the following
Declaration of Conformance concerning the Tartan Ada VMS/C30
Version 2.2 compiler.

DECLARATION OF CONFORMANC:
Compiler Implementor: Tartan Laboratories Incorporated

Ada Validation Facility: IABG mbH, Dept. SZT
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: Tartan Ada VMS/C30

Base Compiler Version: Version 2.2

Host Computer: VAX Station 3100 under VAX/VMS V5.1B

Target Computer: 320C30 on TI Application Board (bare target)

Implementor's Declaration

I, the undersigned, representing Tartan Laboratories Incorporated, have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler(s) listed in this declaration. I
declare that Tartan Laboratories Incorporated is the owner of record of
the Ada Language compiler(s) listed above and, as such, is responsible
for maintaining said compiler(s) in conformance to ANSI/MIL-STD-1815A.
All certificates and registrations for Ada Language compiler(s) listed
in this declaration shall be made only in the owner's corporate name.

: &/
LA — pate: /B¢ & /
Tartan Laboratories Incorporated
D. L. Evans, President

owner's Declaration

I, the undersigned, representing Tartan Laboratories Incorporated, take
full responsibility for implementation and maintenance of the Ada com-
piler(s) listed above, and agree to the public disclosure of the final
Validation Summary Report. I declare that all of the Ada Language
compilers listed, and their host/target performance, are in compliance
with the Ada Language Standard ANSI/MIL-STD-1815A.

///_4//% Date: 7 'Péff 89

Tartan Laboratories Incorporated
D. L. Evans, President

OF THE Ada STAMNDARD

3
s
s
e
3
-4
X
«

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependancies corres-
pond to implementation-dependent pragmas, tc certain machine-
dependent conventions as mentioned in chapter 13 »of the Ada Stan-
dard, and to «certain allowed restrictions on reprasentation
clauses. The implementation-dependent characteristics of the
Tartan Ada VMS/C30 Version 2.2 compiler, as described in this
Appendix, are provided by TARTAN LABORATORIES INCORPORATED.
Unless specifically noted otherwise, refarences in this appendix
are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -._147_d483_648 .. 2_147_483_647;

type FLOAT is digits 6 range -16#0,1000_00d4E+33
1640 .FFFF_FF#E+32;

type LONG_FLOAT is digi
-16%#0.1000_0000_0#E+33 .. 15&0.F

type DURATION is delta 0.0001 range -36400.0 .. 86400.0;

end STANDARD;

Chapter 5
Appendix F to MIL-STD-1815A

This chapter contains the required Appendix F to Military Standard, Ada Programming Language,

ANSI/MIL-STD-1815A (American National Standards Insttute. Inc., February 17, 1983) .

5.1. PRAGMAS

5.1.1. Predefined Pragmas

5.1.2. Implementation-Defined Pragmas

This section summarizes the effects of and restrictions on predefined pragmas.

¢ Access collections are not subject to automatic storage reclamation so pragma CONTROLLED has no effect.
Space deallocated by means of UNCHECKED_DEALLOCATION will be reused by the allocation of new
objects.

« Pragma ELABORATE is supported.
* Pragma INLINE is supported.

* Pragma INTERFACE is now supported. The language_name is ignored by the compiler; that is, the
standard Ada calling convention is used for every call to a subprogram to which this pragma is applied.

o Pragma LIST is supported but has the intended effect only if the command qualifier LIST=ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or wamings.

¢ Pragma MEMORY_SIZ2E is accepted but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

o Pragma OPTIMIZE is supported except when at the outer level (that is, in a package specification or
body).

¢ Pragma PACK is fully supported.

¢ Pragma PAGE is supported but has the intended effect only if the command qualifier LIST=ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or wamings.

o Pragma PRIORITY is supported.

» Pragma STORAGE_UNTIT is accepted but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

¢ SHARED is not supported. No waming is issued if it is supplied.
¢ Pragma SUPPRESS is supported.

e Pragma SYSTEM_NAME is accepted but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

Implementation-defined pragmas provided by Tartan are described in the following sections.

5-1

USER MANUAL FOR TARTAN ADA VMS C30

5.1.2.1. Pragma LINKAGE_NAME

The pragma LINKAGE_NAME associates an Ada entity with a string that is meaningful externally; e.g., to a
linkage editor. It takes the form

pragma LINKAGE_NAME (Ada-simple-name, string-constant)

The Ada-simple-name must be the name of an Ada entity declared in a package specification. This entity must be
one that has a runtime representation; e.g., a subprogram, exception or object. [t may not be a named number or
string constant. The pragma must appear after the declaration of the entity in the same package specification.

The effect of the pragma is to cause the string-constant to be used in the generated assembly code as an
external name for the associated Ada entity. It is the responsibility of the user o guarantee that this string
constant is meaningful to the linkage editor and that no illegal linkname clashes arise.

This pragma has no effect when applied to a library subprogram or to a renames declaration; in the latter case,
no warning message is given.

When determining the maximum allowable length for the extemal linkage name, keep in mind that the
compiler will generate names for elaboration flags simply by appending the suffix #GOTO. Therefore, the
external linkage name has 5 fewer significant characters than the lower limit of other tools that need to process
the name (e.g., 40 in the case of the Tartan Linker).

5.1.2.2. Pragma FOREIGN_BODY

In addition to Pragma INTERFACE, Tartan Ada supplies Pragma FOREIGN_BODY as a way lo access
subprograms in other languages.

Unlike Pragma INTERFACE, Pragma FOREIGN_BODY allows access to objects and exceptions (in addition
to subprograms) to and from other languages.

Some restrictions on Pragma FOREIGN_BODY that are not applicable to Pragma INTERFACE are:

¢ Pragma FOREIGN_BODY maust appear in a top-level non-generic package specification.
¢ All objects, exceptions and subprograms in such a package must be supplied by a foreign object module.
» Types may not be declared in such a package.

Use of the pragma FOREIGN_BODY dictates that all subprograms, exceptions and objects in the package are
provided by means of a foreign object module. In order w0 successfully link a program including a foreign body,
the object module for that body must be provided to the library using the ALBC30 FOREIGN_BODY command
described in Section 4.7.

The pragma is of the form:

pragma FOREIGN_BODY (language_name (, elaboration_routine_name))

The parameter language name is a string intended to allow the compiler t identify the calling convention used
by the foreign module (but this functionality is not yet in operation). Currently, the programmer must ensure that
the calling convention and data representation of the foreign body procedures are compatibie with those used by
the Tartan Ada compiler. Subprograms called by tasks should be reentrant.

The optional elaboration_routine_name string argument provides a means to initialize the package. The
routine specified as the elaboration_routine_name, which will be cailed for the elaboration of this package body,
must be a global routine in the object module provided by the user.

A specification that uses this pragma may contain only subprogram declarations, object decarations that use
an unconstrained type mark, and number declarations. Pragmas may also appear in the package. The type mark
for an object cannot be a task type, and the object declaration must not have an initial value expression. The
pragma must be given prior to any declarations within the package specification. If the pragma is not located
before the first declaration, or any restriction on the declarations is violated, the pragma is ignored and a warning
is generated.

The foreign body is entirely responsible for initializing objects declared in a package utilizing pragma
FOREIGN_BODY. In particular, the user should be aware that the implicit initializations described in LRM 3.2.1
are not done by the compiler. (These implicit initializations are associated with objects of access types, certain
record types and composite types containing components of the preceding kinds of types.)

5.2

APPENDIX F TO MIL-STD-1815A

Pragma LINKAGE_NAME should be used for all declarations in the package, including any declarations in a
nested package specification to be sure that there are no conflicting link names. If pragma LINKAGE _NAME is
not used, the cross-reference qualifier, /CROSS_REFERENCE, (see Section 3.2) should be used when invoking
the compiler and the resulting cross-reference table of linknames inspected to identify the linknames assigned by
the compiler and determine that there are no conflicting linknames (see also Section 3.3).

In the following example, we want to call a function plmn which computes polynomials and is written in C.

package MATH_FUNCS is
pragma FOREIGN_BODY ("C");
function POLYNCMIAL (X:INTEGER) return INTEGER:
--Ada spec matching the C routine
pragma LINKAGE_NAME (POLYNCMIAL, "plmn");:
--Force compiler to use name "plmn" when referring to this
-- function
end MATH_FUNCS:

with MATH_FUNCS: use MATH_FUNCS
procedure MAIN is
X:INTEGER := POLYNOMIAL(10);
-=- Will generate a call to "plmn"”
begin ...
end MAIN; A
To compile, link and run the above program, you do the following steps:

1. Compile MATH_FUNCS
2, Compile MAIN
3. Obtain an object module (e.g. math. TOF) containing the compiled code for plmn.
4. Issue the command
ALBC30 FOREIGN_BODY math_funcs MATH.TOF
5. Issue the command
ALBC30 LINK MAIN

Without Step 4, an attempt (o link will produce an error message informing you of a missing package body for
MATH_FUNCS.

Using an Ada body from another Ada program library. The user may compile a body written in Ada for a
specification into the library, regardless of the language specified in the pragma contained in the specification.
This capability is useful for rapid prototyping, where an Ada package may serve to provide a simulated response
for the functionality that a foreign body may eventually produce. It also allows the user to replace a foreign body
with an Ada body without recompiling the specification.

The user can either compile an Ada body into the library, or use the command ALBC30 FOREIGN_BODY
(See Section 4.7) 10 use an Ada body from another library. The Ada body from another library must have been
compiled under an identical specification. The pragma LINKAGE_NAME must have been applied to all entities
declared in the specification. The only way to specify the linkname for the elaboration routine of an Ada body is
with the pragma FOREIGN_BODY.

Using Calls to the Operating System. In some cases, the foreign code is actually supplied by the operating
system (in the case of system calls) or by runtime libraries for other programming languages such as C. Such
calls may be made using a dummy procedure to supply a file specification to the ALBC30 FOREIGN_BODY
command. You need a dummy . TOF file which may be obtained in a number of ways. One way is to compile
the procedure

procedure DUMMY is
begin

null;
end;

Then, use the library command
5.3

USER MANUAL FOR TARTAN ADA VMS C30

ALBC30 FOREIGN pkg DUMMY.TOF
where pkg is the name of the package that contains the pragma LINKAGE _NAME for the operating system call.
For example 10 use the VMS system service LIBSGET VM in the program TEST:

Package MEMORY is

pragma FOREIGN_BODY ("ASM"):

procedure GET_VIRTUAL_MEMORY (MEM:INTEGER) ;

pragma LINKAGE_NAME (GET_VIRTUAL MEMORY, "LIBSGET_VM ");
end MEMORY;

with MEMORY;
procedure TEST is

begin
GET_VIRTUAL_MEMORY (MEM) ;
end TES’I‘
Obtain the file dummy . TOF. Then use

ALBC30 FOREIGN pkg DUMMY.TOF
to include the body for the system call in the library.

5.2. IMPLEMENTATION-DEPENDENT ATTRIBUTES
No implementation-dependent attributes are currently supported.

5.3. SPECIFICATION OF THE PACKAGE SYSTEM

The parameter values specified for the TI320C30 target in package SYSTEM (LRM 13.7.1 and Annex C] are:

package SYSTEM is
type ADDRESS is new INTEGER;
type NAME is (TI320C30): :
SYSTEM NAME : constant NAME := TI320C30;
STORAGE_UNIT : constant := 32;
MEMORY SIZE : constant := 16 777 _216;

MAX_INT : constant := 2_147_483_647:
MIN_INT : constant := -MAX_INT - 1;
MAX DIGITS : constant := 9;
MAX_MANTISSA : conmstant := 31;
FINE_DELTA : constant := 2#1.0#e-31;
TICK constant := 0.0001:

subtype PRIORITY is INTEGER range 10 .. 100;
DEFAULT_PRIORITY : constant PRIORITY := PRICRITY'FIRST:
RUNTIME_ERROR : exception;

end SYSTEM:;

5.4. RESTRICTIONS ON REPRESENTATION CLAUSES

The following sections explain the basic restrictions for representation specifications followed by additional
restrictions applying to specific kinds of clauses.

5-4

APPENDIX F TO MIL-STD-1815A

5.4.1. Basic Restriction

The basic restriction on representation specifications [LRM 13.1] that they may be given only for types
declared in terms of a type definition, excluding a generic_type_definition (LRM 12.1) and a
private_type_definition (LRM 7.4). Any representation clause in violation of these rules is not obeyed
by the compiler; a diagnostic message is issued.

Further restrictions are explained in the following sections. Any representation clauses violating thase restric-
tions are not obeyed but cause a diagnostic message to be issued.

5.4.2. Length Clauses
Length clauses [LRM 13.2] are, in general, supported. For details, refer o the following sections.

5.4.2.1. Size Specifications for Types

The rules and restrictions for size specifications applied to types of various classes are described below.
The following principle rules apply:

1. The size is specified in bits and must be given by a static expression.

2. The specified size is taken as a mandate to store objects of the type in the given size wherever feasible.
No attempt is made to store values of the type in a smaller size, even if possible. The following rules
apply with regard to feasibility:

¢ An object that is not a component of a composite object is allocated with a size and alignment that
is referable on the target machine; that is, no attempt is made to create objects of non-referable size
on the stack. If such stack compression is desired, it can be achieved by the user by combining
multiple stack variables in a composite object; for example
type My_Enum is (a,B):;
for My enum’size use 1;
V,W: My _enum; -~ will occupy two storage
-- units on the stack
-- (if allocated at all)
type rec is record
V,W: My_enum;
end record:
pragma Pack(rec); ,
O: rec; -- will occupy one storage unit

¢ A formal parameter of the type is sized according to calling conventions rather than size
specifications of the type. Appropriate size conversions upon parameter passing take place
automatically and are transparent to the user. ‘

¢ Adjacent bits to an object that is a component of a composite object, but whose size is
non-referable, may be affected by assignments to the object, unless these bits are occupied by other
components of the composite object; that is, whenever possible, a component of non-referable size
is made referable.

In all cases, the compiler generates correct code for all operations on objects of the type, even if they are
stored with differing representational size in different contexts.

Note: A size specification cannot be used to force a certain size in value operations of the type: for
example

type my_int is range 0..65535;
for my_int’size use 16; -- o.k.
A,B: my int;
...A + B... -- this operation will generally be
-- executed on 32-bit values

USER MANUAL FOR TARTAN ADA VMS C30

3. A size specification for a type specifies the size for objects of this type and of all its subtypes. For
components of composite types, whose subtype would allow a shorter representation of the component,
no attempt is made to take advantage of such shorter representations. In contrast, for types without a
length clause, such components may be represented in a lesser number of bits than the number of bits
required to represent all values of the type. Thus, in the example

type MY_INT is range 0..2*%*15-1;

for MY INT'SIZE use 16; -- (1)

subtype SMALL MY INT is MY_INT range 0..255;
type R is record

X: SMALL MY INT;

ené ‘ :':ecord;
the component R.X will occupy 16 bits. In the absence of the length clause at (1), R.X may be represented
in 8 bits.

For the following type classes, the size specification must coincide with the default size chosen by the compiler
for the type:

 access types
¢ floating-point types
¢ task types

No useful effect can be achieved by using size specifications for these types.

5.4.2.2. Size Specification for Scalar Types

The specified size must accommodate all possible values of the type including the value 0 (even if 0 is not in
the range of the values of the type). For numeric types with negative values the number of bits must account for
the sign bit. No skewing of the representation is attempted. Thus

type my_int is range 100..101;
requires at least 7 bits, although it has only two values, while
type my_int is range ~-101..-100:
requires 8 bits to account for the sign bit.
A size specification for a real type does not affect the accuracy of operations on the type. Such influence
should be exerted via the accuracy_definition of the type (LRM 3.5.7,3.5.9).
A size specification for a scalar type may not specify a size larger than the largest operation size supported by
the target architecture for the respective class of values of the type.

5.4.2.3. Size Specificadion for Array Types

A size specification for an array type must be large enough to accommodate all components of the array under
the densest packing strategy explained below in adherence to any alignment constraints on the component type
(see Section 5.4.7).

The size of the component type cannot be influenced by a length clause for an array. Within the limits of
representing all possible values of the component subtype (but not necessarily of its type), the representation of
components may, however, be reduced to the minimum number of bits, unless the component type carries a size
specification.

If there is a size specification for the component type, but not for the array type, the component size is
rounded up to a referable size, unless pragma PACK is given. This applies even to boolean types or other types
that require only a single bit for the representation of all values.

5-6

APPENDIX F TO MIL-STD-1815A

5.42.4. Size Specification for Record Types

A size specification for a record type does not influence the default type mapping of a record type. The size
must be at least as large as the number of bits determined by type mapping. Influence over packing of com-
ponents can be exerted by means of (partial) record representation clauses or by Pragma PACK.

Neither the size of component types, nor the representation of component subtypes can be influenced by a
length clause for a record.

The only implementation-dependent components allocated by Tartan Ada in records contain dope information
for arrays whose bounds depend on discriminants of the record or contain relative offsets of components within a
record layout for record components of dynamic size. These implementation-dependent components cannot be
named or sized by the user.

A size specification cannot be applied to a record type with components of dynamically determined size.

Note: Size specifications for records can be used only to widen the representation accomplished by padding at
the beginning or end of the record. Any narrowing of the representation over default type mapping must be
accomplished by representation clauses or pragma PACK.

5.4.2.5. Specification of Collection Sizes

The specification of a collection size causes the collection to be allocated with the specified size. It is
expressed in storage units and need not be static; refer to package SYSTEM for the meaning of storage units.

Any attempt to allocate more objects than the collection can hold causes a STORAGE_ERRCR exception to be
raised. Dynamically sized records or arrays may carry hidden administrative storage requirements that must be
accounted for as part of the collection size. Moreover, alignment constraints on the type of the allocated objects
may make it impossible to use all memory locations of the allocated collection. Furthermore, some administra-
tive overhead for the allocator must be taken into account by the user (currently 1 word per allocated object).

In the absence of a specification of a collection size, the collection is extended automatically if more objects
are allocated than possible in the collection originally allocated with the compiler-established defauit size. In this
case, STORAGE_ERRCR is raised only when the available target memory is exhausted. If a collection size of
zero is specified, no access collection is allocated.

5.4.2.6. Specification of Task Activation Size
The specification of a task activation size causes the task activation to be allocated with the specified size. It
is expressed in storage units; refer to package SYSTEM for the meaning of storage units.

Any atempt to exceed the activaton size during execution causes a STORAGE_ERROR exception to be
raised. Unlike collections, there is generally no extension of task activations.

5.4.2.7. Specification of ' SMALL

Only powers of 2 are allowed for * SMALL.

The length of the representation may be affected by this specification. If a size specification is also given for
the type, the size specification takes precedence; the specification of ' SMALL must then be accommodatable
within the specified size.

5.4.3. Enumeration Representation Clauses
For enumeration representation clauses [LRM 13.3), the following restrictions apply:

e The internal codes specified for the literals of the enumeration type may be any integer value between
INTEGER' FIRST and INTEGER' LAST. It is strongly advised to not provide a representation clause that
merely duplicates the default mapping of enumeration types, which assigns consecutive numbers in as-
cending order starting with 0, since unnecessary runtime cost is incurred by such duplication. It should be
noted that the use of attributes on enumeration types with user-specified encodings is costly at run time.

e Array types, whose index type is an enumeration type with non-contiguous value encodings, consist of a
contiguous sequence of components. Indexing into the array involves a runtime translation of the index
value into the corresponding position value of the enumeration type.

5.7

USER MANUAL FOR TARTAN ADA VMS C30

5.4.4. Record Representation Clauses

The alignment clause of record representation clauses [LRM 13.4] is observed. The specified expression
must yield a target-dependent value.

Static objects may be aligned at powers of 2 up to a page boundary. The specified alignment becomes the
minimum alignment of the record type, unless the minimum alignment of the record forced by the component
allocation and the minimum alignment requirements of the components is aiready more stringent than the
specified alignment.

The component clauses of record representation clauses are allowed only for components and discriminants
of statically determinable size. Not all components need to be present. Component clauses for components of
variant parts are allowed only if the size of the record type is statically determinable for every variant.

The size specified for each component must be sufficient to allocate all possible values of the component
subtype (but not necessarily the component type). The location specified must be compatible with any alignment
constraints of the component type; an alignment constraint on a component type may cause an implicit alignment
constraint on the record type itself.

If some, but not all, discriminants and components of a record type are described by a component clause, then
the discriminants and components without component clauses are allocated after those with component clauses;
no attempt is made to utilize gaps left by the user-provided allocation.

5.4.5. Address clauses
Address clauses [LRM 13.5] are supported with the following restrictions:

e When applied to an object, an address clause becomes a linker directive to allocate the object at the given
address. For any object not declared immediately within a top-level library package, the address clause is
meaningless. Address clauses applied to local packages are not supported by Tartan Ada. Address clauses
applied to library packages are prohibited by the syntax; therefore, an address clause can be applied only to
a px..age if it is a body stub.

¢ Address clauses applied to subprograms and tasks are implemented according to the LRM rules. When
applied to an entry, the specified value identifies an interrupt in a manner customary for the target.
Immediately after a task is created, a runtime call is made for each of its entries having an address clause,
establishing the proper binding between the entry and the interrupt.

o Specified addresses must be static.

5.4.6. Pragma PACK
Pragma PACK [LRM 13.1] is supported. For details, refer to the following sections.

5.4.6.1. Pragma PACK for Arrays

If pragma PACK is applied to an array, the densest possible representation is chosen. For details of packing,
refer to the explanation of size specifications for arrays (Section 5.4.2.3).

If, in addition, a length ciause is applied to

1. the array type, the pragma has no effect, since such a length clause already uniquely determines the array
packing method.

2. the component type, the array is packed densely, observing the component’s length clause. Note that the
component length clause may have the effect of preventing the compiler from packing as densely as
would be the default if pragma PACK is applied where there was no length clause given for the com-
ponent type.

APPENDIX F TO MIL-STD-1815A

5.4.6.2. The Predefined Type String

Package STANDARD applies Pragma PACK to the type st ring. However, when applied to character arrays,
this pragma cannot be used to achieve denser packing than is the default for the target: 1 character per 32-bit
word.

5.4.6.3. Pragma PACK for Records

If pragma PACK is applied to a record, the densest possible representation is chosen that is compatible with
the sizes and alignment constraints of the individual component types. Pragma PACK has an effect only if the
sizes of some component types are specified explicitly by size specifications and are of non-referable nawre. In
the absence of pragma PACK, such components generally consume a referable amount of space.

It should be noted that default type mapping for records maps components of boolean or other types that
require only a single bit 10 a single bit in the record layout, if there are multiple such components in a record.
Otherwise, it allocates a referable amount of storage to the component.

If pragma PACK is applied to a record for which a record representation clause has been given detailing the
allocation of some but not all components, the pragma PACK affects only the components whose allocation has
not been detailed. Moreover, the swrategy of not utilizing gaps between explicitly allocated components still
applies.

5.4.7. Minimal Alignment for Types

Certain alignment properties of values of certain types are enforced by the type mapping rules. Any represen-
tation specification that cannot be satisfied within these constraints is not obeyed by the compiler and is ap-
propriately diagnosed.

Alignment constraints are caused by properties of the target architecture, most notably by the capability to
extract non-aligned component values from composite values in a reasonably efficient manner. Typically, restric-
tions exist that make extraction of values that cross certain address boundaries very expensive, especially in
contexts involving array indexing. Permitting data layouts that require such complicated extractions may impact
code quality on a broader scale than merely in the local context of such extractions.

Instead of describing the precise algorithm of establishing the minimal alignment of types, we provide the
general rule that is being enforced by the alignment rules:

» No object of scalar type including components or subcomponents of a composite type, may span a target-
dependent address boundary that would mandate an extraction of the object’s value to be performed by two
or more extractions.

5.5. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS

The only implementation-dependent components allocated by Tartan Ada in records contain dope information
for arrays whose bounds depend on discriminants of the record. These components cannot be named by the user.

5.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLAUSES

Section 13.5.1 of the Ada Language Reference Manual describes a syntax for associating interrupts with task
entries. Tartan Ada implements the address clause
for TOENTRY use at intID;

by associating the interrupt specified by intID with the toentry entry of the task containing this address
clause. The interpretation of int ID is both machine and compiler dependent.

5-9

USER MANUAL FOR TARTAN ADA VMS C30

5.7. RESTRICTIONS ON UNCHECKED CONVERSIONS

Tartan supports UNCHECKED_CONVERSION with a restriction that requires the sizes of both source and
target types to be known at compile time. The sizes need not be the same. If the value in the source is wider than
that in the target, the source value will be truncated. If narrower, it will be zero-extended. Calls on instantiations
of UNCHECKED_CONVERSION are made inline automatically.

5.8. IMPLEMENTATION-DEPENDENT ASPECTS OF INPUT-OUTPUT PACKAGES

Tartan Ada supplies the predefined input/output packages DIRECT_I0, SEQUENTIAL_IO, TEXT_IO, and
LOW_LEVEL_IO as required by LRM Chapter 14. However, since TI320C30 is used in embedded applications
lacking both standard I/O devices and file systems, the functionality of DIRECT_IO, SEQUENTIAL_IO, and
TEXT_IO is limited.

DIRECT_IO and SEQUENTIAL_IO raise USE_ERROR if a file open or file access is attempted. TEXT_IO
is supported to CURRENT _OUTPUT and from CURRENT_INPUT. A routine that takes explicit file names raises
USE_ERROR.

5.9. OTHER IMPLEMENTATION CHARACTERISTICS
The following information is supplied in addition to that required by Appendix F to MIL-STD-1815A.

5.9.1. Definition of a Main Prrgram

Any Ada library subprogram unit may be designated the main program for purposes of linking (using the
ALBC30 command) provided 'hat the subprogram has no parameters.

Tasks initiated in imported library units follow the same rules for termination as other tasks [described in
LRM 94 (6-10)]. Specifically, these tasks are not terminated simply because the main program has terminated.
Terminate alternatves in selective wait statements in library tasks are therefore strongly recommended.

5.9.2. Implementation of Generic Units

All instantiations of generic units, except the predefined genmeric UNCHECKED_CONVERSION and
UNCHECKED_DEALLOCATION subprograms, are implemented by code duplications. No atlempt at sharing
code by muluple instantiations is made in this release of Tartan Ada. (Code sharing will be implemented in a
later release.)

Tartan Ada enforces the restriction that the body of a generic unit must be compiled before the unit can be
instantiated. It does not impose the restriction that the specification and body of a generic unit must be provided
as part of the same compilaton. A recompilation of the body of a generic unit will obsolete any units that
instantiated this generic unit.

5.9.3. Attributes of Type Duration
The type DURATION is defined with the following characteristics:

DURATION’DELTA is 0.0001 sec
DURATION’ SMALL is 6.103516E5 sec
DURATION'’ FIRST is -86400.0 sec
DURATION’ LAST is 86400.0 sec

5.9.4. Values of Integer Attributes

Tartan Ada supports the predefined integer type INTEGER. The range bounds of the predefined type
INTEGER are:

INTEGER' FIRST = -2**31
INTEGER’ LAST = 2%*31-|

5-10

APPENDIX F TO MIL-STD-1815A

The range bounds for subtypes declared in package TEXT IO are:
COUNT’ FIRST =0
COUNT' LAST = INTEGER' LAST -]

POSITIVE_COUNT'FIRST =1
POSITIVE_COUNT’ LAST = INTEGER' LAST - |

FIELD’FIRST =0
FIELD’ LAST =20

The range bounds for subtypes declared in packages DIRECT_IO are:

COUNT'’ FIRST =0
COUNT’ LAST = INTEGER’ LAST

POSITIVE_COUNT’'FIRST =1
POSITIVE_COUNT’ LAST = COUNT' LAST

5-11

USER MANUAL FOR TARTAN ADA VMS C30

5.9.5. Values of Floating-Point Attributes

5-12

APPENDIX F TO MIL-STD-1815A

Tartan Ada supports the predefined floating-point types FLOAT and LONG_FLOAT.

Attribute Value for FLOAT
DIGITS 6
MANTISSA 23
EMAX 92
EPSILON 16#0.1000_00#E -4
approximately 9.53674E-07
SMALL 16#0.8000_00#E-21
approximately 2.58494E-26
LARGE 16#0.FFFF_F8#E+21
approximately 1.93428E+25
SAFE_EMAX 126
SAFE_SMALL 16#0.2000_004E-31
approximately 5.87747E-39
SAFE_LARGE 16#0.3FFF_FE#E+32
approximately 8.50706E+37
FIRST -16#0.1000_00%E+33
approximately -3.40282E+38
LAST 16#0.FFFF_FF#E+32
approximately 3.40282E+38)
MACHINE_RADIX 2
MACHINE_MANTISSA 24
MACHINE_EMAX 128
MACHINE_EMIN -126
MACHINE_RCOUNDS FALSE
MACHINE_OVERFLOWS TRUE

5-13

USER MANUAL FOR TARTAN ADA VMS C30

Atribute
DIGITS
MANTISSA
EMAX

EPSILON
approximately

SMALL
approximately

LARGE
approximately
SAFE_EMAX

SAFE_SMALL
approximately

SAFE_LARGE
approximately

FIRST
approximately

LAST
approximately

MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS

MACHINE_OVERFLOWS

Value for LONG FLOAT

9
31
124

16#0.4000_0000_0#E-7
9.31322575E-10

16#0.8000_0000_0#E-31
2.35098870E-38

16#0.FFFF_FFFE_O#E+31
2.12676479E+37
1022

16#0.2000_0000_0#E-31
5.87747175E-39

16#0.3FFF_FFFF_8#E+32
8.50705917E+37

-16#0.1000_0000_0#E+33
-3.40282367E+38

16#0.FFFF_FFFF_O#E+32
3.40282367E+38

2

32

128
-126
FALSE

TRUE

APPENDIX F TO MIL-STD-1815A

5.10. SUPPORT FOR PACKAGE MACHINE_CODE

Package MACHINE_CODE provides the programmer with an interface through which to request the genera-
tion of any instruction that is available on the C30. The ADAC30 implementation of package MACHINE_ _CODE
is similar to that described in Section 13.8 of the Ada LRM, with several added features.

5.10.1. Basic Information

As required by LRM, Section 13.8, a routine which contains machine code inserts may not have any other
kind of statement, and may not contain an exception handler. The only allowed declarative item is a use clause.
Comments and pragmas are allowed as usual.

5.10.2. Instructions

A machine code insert has the form TYPE_MARK’ RECORD_AGGREGATE, where the type must be one of the
records defined in package MACHINE_CODE. Package MACHINE_CODE defines seven types of records. Each
has an opcode and zero 10 6 operands. These records are adequate for the expression of all instructions provided
by the C30.

5.10.3. Operands

An operand consists of a record aggregate which holds all the information to specify it to the compiler. All
operands have an address mode and one or more other pieces of information. The operands correspond exactly to
the operands of the instruction being generated.

5.103.1. Address Modes

Each operand in a machine code insert must have an Address_Mode_Name. The address modes provided in
package MACHINE_CODE provide access to all address modes supported by the C30.

In addition, package MACHINE CODE supplies the address modes Symbolic_Address and
Symbolic_Value which allow the user to refer to Ada objects by specifying Object’ ADDRESS as the value
for the operand. Any Ada object which has the ' ADDRESS attribute may be used in a symbolic cperand.
Symbolic_Address should be used when the operand is a true address (that is, a branch target for exampie).
Symbolic_Value should be used when the operand is actually a value (that is, one of the source operands of
an ADDI instruction).

When an Ada object is used as a source operand in an instruction (that is, one from which a value is read), the
compiler will generate code which fetches the value of the Ada object. When an Ada object is used as the
destination operand of an instruction, the compiler will generate code which uses the address of the Ada object as
the destination of the instruction.

5.10.4. Examples

The ADAC30 implementation of package MACHINE _CODE makes it possible to specify both simple machine
code inserts such as

two_format’ (LDI, (Imm, S), (Reg, RO))
and more complex inserts such as

three_format’ (ADDI3,
(Imm, 10),
(Symbolic_Value, Array Var(X, Y, 27)'ADDRESS),
(Symbolic_ “Address, Parameter 1’ ADDRESS))

In the first example, the compiler will emit the instruction LDI 3, RO. In the second example the compiler
will first emit whatever instructions are needed to form the address of Array_Var (X, Y, 27) and then emit
the ADDI3 instruction. If Parameter 1 is not found in a register, the compiler will put the result of the
addition in a temporary register and then store it o Parameter_1’ADDRESS. Note that the destination
operand of the ADDI3 instruction is given as a Symbolic_Address. This hoids true for all destination

5-15

USER MANUAL FOR TARTAN ADA VMS C30

operands. The various error checks specified in the LRM will be performed on all compiler-generated code
unless they are suppressed by the programmer (either through pragma SUPPRESS, or through command
qualifiers).

5.10.5. Incorrect Operands

Two modes of operation are supplied for package MACHINE_CODE: Fixup mode and No_Fixup mode.
The choice of mode is made with the qualifier /Fixup_Machine_Code or its negation
/No_Fixup_Machine_Code.

In No_Fixup mode, the specification of incorrect operands for an instruction is considered to be a fatal
error. In this mode, the compiler will not generate any extra instructions to help you to make a machine code
insertion. Note that it is still legal to use ADDRESS constructs as long as the object which is used meets the
requirements of the instruction.

In Fixup mode, if you specify incorrect operands for an instruction, the compiler will do its best o fix up the
machine code to provide the desired effect. For example, although it is illegal to use a memory address as the
destination of an ADDI instruction, the compiler will accept it and try 1o generate correct code. In this case, the
compiler will load the value found at the memory address indicated into a register, use this register in the ADDI
instruction, and then store from that register back to the desired memory location.

Two_Opnds’ (ADDI, (Imm, 10), (ARI, ARl))

will produce a code sequence like

LDI *AR1l, RO
ADDI 10, RO
STI RO, *AR1l

The next example illustrates the fix up required when the displacement is out of range for the first operand of an
ADDI3 instuction. The displacement is first loaded into one of the index registers.

Three_Opnds’ (ADDI3, (IPDA, AR3, 2), (Reg, RO}, (Reg, Rl))
will produce a code sequence like

LDI 2, IRO
ADDI3 AR3 (IR0}, RO, R1

5.10.6. Register Usage

Since the compiler may need to allocate registers as temporary storage in machine code routines, there are
some restrictions placed on your register usage. The compiler will automatically free all the registers which
would be volatile across a call for your use (that is, R0..R3, AR0..AR2, IR0, IR1, and DP). If you reference any
other register, the compiler will reserve it for your use untl the end of the machine code routine. The compiler
will not save the register automaticaily if this routine is inline expanded. This means that the first reference to a
register which is not volatile across calls should be an instruction which saves its value in a safe place. The value
of the register should be restored at the end of the machine code routine. This rule will help ensure correct
operation of your machine code insert even if it is inline explaned in another routine. However, the compiler will
save the register automatically in the prolog code for the routine and restore it in the epilog code for the routine if
the routine is not inline expanded.

The compiler may need several registers to generate code for operand fixups in machine code inserts. If you
use all the registers, fixups will not be possible. In general, when more registers are available to the compiler it is
able to generate better code.

5-16

APPENDIX F TO MIL-STD-1815A

5.10.7. Inline Expansion

Routines which contain machine code inserts may be inline expanded into the bodies of other routines. This
may happen under programmer control through the use of pragma INLINE, or at Optimization Level 3 when the
compiler selects that optimization as an appropriate action for the given situation. The compiler will treat the
machine code insert as though it was a call; volatile registers will be saved and restored around it, etc.

5.10.8. Unsafe Assumptions

There are a variety of assumptions which should not be made when writing machine code inserts. Viola.on
of these assumptions may result in the generation of code which does not assemble or which may not function
correctly.

» The compiler will not generate call site code for you if you emit a call instruction. You must save and
restore any volatile registers which currendy have values in them, etc. If the routine you call has out
parameters, a large function return result, or an unconstrained result, it is your responsibility to emit the
necessary instructions to deal with these constructs as the compiler expects. [n other words, when you emit
a call, you must follow the linkage conventions of the routine you are calling. For further details on call
site code, see Sections 6.4, 6.5 and 6.6.

e Do not assume that the * ADDRESS on Symbolic_Address or Symbolic_Value operands means
that you are getting an ADDRESS to operate on. The Address- or Value-ness of an operand is determined
by your choice of Symbolic_Address or Symbolic_Value. This means that to add the contents of
X to R3, you should write

Three_Format’ (ADDI, (Symbolic_Value, X’'ADDRESS),
(Reg, R3))

but to add the address of X to R3, you should write

Three Format’ (ADDI, (Symbolic_Address, X'ADDRESS),
(Reg, R3)):

5.10.9. Package MACHINE_CODE

with system; == =%-= a3da ="~
package Machine_Code is

type Instruction_Mnemonic is

-— the character "i" has been appended to instructions that
-- conflict with Ada reserved words.

(ABSF, ABSF_STF, ABSI,

ABSI_STI, ADDC, ADDC3,

ADDC3_STI, ADDF, ADDF3,

ADDF3_STF, ADDI, ADDIZ,

ADDI3_STI, ANDi, AND3,

AND3_STI, ANDN, ANDN3,

ASH, ASH3,

ASH3_STI, B8U, B8Ls,

BHI, BLO, BHS,

BEQ, BNE, BLE,

BGT, BLT, BGE,

BZ, BNZ, BNP, -~ BNP [s another name for BLE
BP, BN, BNN,

BNV, BV, BNUF,

8UF, BNC, BC,

8NLV, BLV, BNLUF,

BLUF, BZUF, BUD,

BLSD, BHID, BLOD,

BHSD, BEQD, BNED,

BLED, BGTD, BLTD,

BGED, BZD, BNZD,

BNPD, BPD, BND, -- BNPD is another rame for BLED

5-17

USER MANUAL FOR TARTAN ADA VMS C30

5-18

BNND, BNVD, BVD,
BNUFD, BUFD, BNCD,
BCD, BNLVD, BLVD,
BNLUFD, BLUFD, BZUFD,
BR, BRD, CALL,

-= Another
-- Use this

CALL_ncrect,

CALLU, CALLLS,)
CALLHI, CALLLO, CALLHS,
CALLEQ, CALLNE, CALLLE,
CALLGT, CALLLT, CALLGE,
CALLZ, CALLNZ, CALLNP,
CALLP, CALLN, CALLNN,
CALLNV, CALLV, CALLNUF,
CALLUF, CALLNC, CALLC,
CALLNLV, CALLLV, CALLNLUF,
CALLLUF, CALLZUF,

case_jump,

CMPF,
CMPI,
DBU,

DBLO,
DBNE,
DBLT,

CMPF3,
CMPI3,

DBLS, DBHI,
DBHS, DBEQ,
DBLE, DBGT,
DBGE, DBZ,

DBNZ, DBNP, DBP,

DBN, DBNN, DBNV,

DBV, DBNUF, DBUF,

DBNC, DBC, DBNLV,

DBLV, DBNLUF, DBLUF,

DBZUF, DBUD, DBLSD,

DBHID, DBLOD, DBHSD,

DBEQD, DBNED, DBLED,

DBGTD, DBLTD, DBGED,

DBZD, DBNZD, DBNED, -

DBPD, DBND, DBNND,

DBNVD, DBVD, DBNUFD,

DBUFD, DBNCD, DBCD,

DBNLVD, DBLVD, DBNLUED,

DBLUFD, DBZUFD, FIX,

FIX_STI, FLOATi, FLOAT_STF,
IACK, IDLE, LDE,

LDF, LDFU, LDFLS,

LDFHI, LDFLO, LDFHS,

LOFEQ, LDFNE, LDFLE,

LDFGT, LDFLT, LDFGE,

LDFZ, LDFNZ, LDFNP,

LDFP, LDFN, LDENN,

LDFNV, LDFV, LDFNUF,

LDOFUF, LDFNC, LDFC,

LDFNLV, LDFLV, LOFNLUF,

LDFLUF, LOFZUF, LDFI,

LOFLDF, LDF_STF, LDI,
LDIU, LDILS, LDIHI,
LDILO, LDIHS, LDIEQ,

LDINE, LDILE, LDIGT,

LDILT, LDIGE, LDIZ,

LDINZ, LDINP, LDIP, -
LOIN, LDINN, LDINV,

LDIV, LDINUF, LDIUF,

LDINC, LDIC, LDINLV,

LDILV, LDINLUF, LDILUF,

-— CALLNP

name for CALL.
when call never returns.

is another name for CALLLE

Another name for BU.
use this when building a CASE

DBNP is another name for DBLE

DBNPD is another name for 2BLED

LOFNP is ancther name for LDFLZ

v o~

LDINP is another name for LDILE

statement

LDIZUF, LDII,

LSH3,

MPYF3_ADDF3_1,

MPYF3_ADDF3_2,

MPYF3_ADDF3_3,

MPYF3_ADDF3_4,

MPYF3_ADDF3_5,

MPYF3_ADDF3_6,

MPYF3_SUBF3_1,

MPYF3_SUBF3_2,

MPYF3_SUBF3_3,

MPYF3_SUBF3_4,

MPYF3_SUBF3_5,

MPYF3_SUBF3_6,

MPYI, MPYI3,

MPYI3_STI,

MPYI3_ADDI3_l,

MPYI3_ADDI3_2,

MPYI3_ADDI3_3,

MPYI3_ADDI3_4,

MPYI3_ADDI3_S,

LDILDI,
LDI_STI, LDM, LSH,

LSH3_STI,
MPYF3, MPYF3_STF,

MPYF,

MPYF3_

SrcA:
sreC:

src

sreC:

SrcA:
srcC:

srcA:
srcC:

Srca:
srcC:

srcA:
sreC:

MPYF3_

srca:
srcC:

srch:
srcC:

srcA:
sreC:

srchA:
srcC:

srcA:
srcC:

SrcA:
srcC:

MPYI3_

srcA:
srcC:

srcA:
sreC:

srcA:
sreC:

SrcA:
srcC:

srcA;
srcC:

APPENDIX F TO MIL-STD-1815A

ADDF3 srcA, srcB, dstl, srcC, sredD, dst2

indirect; sreB: indirecz; dstl: RO or 2L

’n Register; srcD: Rn Register; dst2 R2 or
Rn Register; srcB3: indirect; dstl: RO or RL
Rn Register; srcl: indirecz; dst2: R2 or R3
An Register; srcB: Rn Register; dszl: RO or
indirect; sreD: indirect; dst2: 22 or

Rn Register; srcB: indirect; dstl: RO or Rl
indirect; srcD: Rn Register; dst2: R2 or R3
indirect; srcB: Rn Register; dstl: RC or Rl
Rn Register; srcD: indirect; dst2: R2 or R3
indirect; srcB: Rn Register; dstl: R0 or Ri
indirect: srcD: Rn Register; dst2: R2 or R3
SUBF3 srcA, srcB, dstl, srcC, srcD, dsc2
indirect; srcB: indirect; dstl: RO or RI

Rn Register; srcD: Rn Register., dst2 R2 or
Rn Register; srcB: indirect; dstl: RC or R1l
Rn Register; srcD: indirect; dst2: R2 or R3
Rn Register; srcB3: Rn Reglister; dstl: R0 cr
indirect; srcD: indirect: &st2: R2 or R3

Rn Register; srcB: indirect; dstl: RC or Rl
indirect; srecD: Ra Register; dst2: R2 or R3
indirect; srcB: Rn Register; dsti: RC or RI
Rn Register; srcD: indirect; dst2: R2 or R3
indirect; srcB: Rn Register; dstl: RO or Rl
indirect: srcD: Rn Register; dst2: R2 or R3

R3

RL

R3

ADDI3 srcA, sreB, dstl, srcC, srcD, dst2
indirect; srecB: indirect; dstl: RC cr RI

Rn Register; srcD: Rn Register; dst2 R2 or R3
Rn Register; srcB: indirect; dstl: RC or R1
Rn Register; srcD: indirecz; dst2: R2 or R3
Rn Register; srcB: Rn Register; dstl: RO or RL
indirect; srcD: indirect; dst2: R2 cor R3

Rn Register; srcB: indirect; dstl: R0 or Ri
indirect; srcf: Rn Register; dst2: R2 or R3
indirect; srcB: Rn Register; dsti: RC or RL
Rn Register; srcD: indirect; dst2: R2 or R3

5-19

USER MANUAL FOR TARTAN ADA VMS C30

5-20

indirect;
indirecst:

MPYI3_ADDI3_6, -~ srcA:

-= srcC: srcD:

srcB: Rn Register;
an Register;

dsti:
dst2:

RO or Rl
R2 or R3

-- MPYI3_SUBI3 srcA, srcB, dstl, srcC, srcD, dst2

MPYI3_SUBI3_1, -- srcA: indirect; srcB: indirect; dstl: RC or Rl
-~ srcC: Rn Register; srcD: Rn Register; dst2 R2 or R3
MPYI3_SUBI3_2, -- srcA: Rn Register; srcB: indirect; dstl: RC or R’!
-= srcC: Rn Register; srcD: indirecz; dst R2 or R3
MPYI3_SUBI3_3, ~= srcA: Rn Register; srcB: Rn Register; dstl: R0 or R1
== srcC: indirect; srcD: indirect; dst2: R2 or 23
MPYI3_SUBI3_4, == srcA: Rn Register; srcB: indirect: dstl: RO or RI
-~ srcC: indirect; srcD: Rn Register; dst2: R2 or R3
MPYI3_SUBI3_S, -= srcA: indirect; srcB: Rn Register; dstl: RO or Rl
~=~ srcC: Rn Register; srcD: indirect; dst2: R2 or R3
MPYI3_SUBI3 s, -= srcA: indirect; srcB: Rn Register; dstl: RO or Rl
-- srcC: indirect: srcD: Rn Register; dst2: R2 or R3

NEGB, NEGF,

NEGF_STF, NEGI, NEGI_STI,
NOP, “NORM, NORM_STF,
NOTi, NOT_STI, ORi,
OR3, OR3_STI, POP,
POPF, PUSH, PUSHF,
RETIU, RETILS, RETIHI,
RETILO, RETIHS, RETIEQ,
RETINE, RETILE, RETIGT,
RETILT, RETIGE, RETIZ,
RETINZ, RETINP, RETIP,
RETIN, RETINN, RETINV,
RETIV, RETINUF, RETIUF,
RETINC, RETIC, RETINLV,
RETILV, RETINLUF, RETILUF,
RETIZUF, RETSU, RETSLS,
RETSHI, RETSLO, RETSHS,
RETSEQ, RETSNE, RETSLE,
RETSGT, RETSLT, RETSGE,
RETSZ, RETSNZ, RETSNP,
RETSP, RETSN, RETSNN,
RETSNV, RETSV, RETSNUF,
RETSUF, RETSNC, RETSC,
RETSNLV, RETSLV, RETSNLUF,
RETSLUF, RETSZUF, RND,
ROL,

ROLC, ROR,

RORC,

RPTB, RPTS, SIGI,

STF, STFI, STF_STF,
STI, STII, STI_STI,
SUBB, SUBB3,

SUBC, SUBF, SUBF3,
SUBF3_STF, SUBI, SUBI3,
SUBI3_STI, SUBRB,
SUBRF,

SUBRI,

SWI, TRAPU,

TRAPLS, TRAPHI, TRAPLC,
TRAPHS, TRAPEQ, TRAPNE,
TRAPLE, TRAPGT, TRAPLT,
TRAPGE, TRAPZ, TRAPNZ,
TRABNP, TRAPP, TRAPN, -- TRAPNP s

-~ RETINP is another name

-= RETSNP is another name

another name

for RETILE

for RETSLE

for

TRAPLE

APPENDIX F TO MIL-STD-1815A

TRAPNN, TRAPNV, TRAPV,
TRAPNUF, TRAPUF, TRAPNC,
TRAPC, TRAPNLV, TRAPLV,
TRAPNLUF, TRAPLUF, TRAPZUF,
TSTB, TSTB3,

XORi, XOR3, XOR3 _STI):

type Register is
(RO, R1l, R2, R3, R4, RS, R6, &7,
Ar0, AR1l, AR2, AR3, AR4, AR5, AR6, AR7,
oP,
IR0, IR1,
BK, s?, ST, IE,
IFlags, -- expanded name zo avoid conflict with ACA reserved word "IF"
IOF,
RS, RE, RC);

type FloatLit is digits 9;

subtype Auxiliary Register is Register range ARO .. AR7:
subtype Index_Register is Register range IRC .. IR,
subtype Data_Page_Pointer i{s Register range 2P .. OP;
subtype Data_Page_Offset is integer range Q0 .. 16777215;
subtype Displacement is integer range O .. 253;

type Address_Mode is
(Imm, -- short Immediate
LongImm, == longe Immediate
FloatImm,-- short float immediate
Direct, == Direct

Regq, -~ Register

ARI, -=- Auxiliary Register Indirec:

IPDA, -=~ Indirect with Pre -Displacement Add

1PDS, -~ Indirect with Pre -Displacement Subtract LY
IPrDAM, ~-- Indirect with Pre -Displacement Add 5§ Modify

IPrDSM, == Indirect with Pre -Displacement Subtract i Modify

IPoDAM, =--~ Indirect with Post-Displacement Add § Modify

IPoDSM, =-- Indirect with Post-Displacement Subtract & Modify

IPoDACM, ~-- Indirect with Post-Displacement Add § Circular Medify
IPoDSCM, -~ Indirect with Post-Displacement Subtract & Circular Modify
IPrIA, -- Indirect with Pre -Index Add

IPrls, == Indirect with Pre -Index Subtract

IPrIAM, ==~ Indirect with Pre -Index Add & Modify

IPrISM, -~ Indirect with Pre -Index Subtract § Medify

IPoIAM, -- Indirect with Post-Index Add & Modify

IPoISM, =~ Indirect with Post-Index Subtract & Modify

IPoIACM, -~ Indirect with Post-Index Add & Circular Modify
IPoISCM, -~ Indirect with Post-Index Subtract & Circular Modify
IPoIABRM, -~ Indirect with Post-Index Add & 3it-Reverse Mcdify
PcRel, -~ Pc-relative {(a label, for exampile)

Symbolic_Address, -- special use to express the address of an ADA ob:ect
Symbolic_Value); == special use to express the vaiue of an ADA obiect

type Operand(AM : Address Mode := Imm -~ defaulted o0 keep Ada Happy
) is
record

-- This record describes ail the possible representations of an operand.

-- It must be coordinated with the code generator’s model.

case AM is

when Imm =>
-~ Short Immediate
K: Integer:

when Longlmm =>

5-21

USER MANUAL FOR TARTAN ADA VMS C30

5-22

when

when

when

when

when

when

when

when

when

when

when

when

when

when

-- longe Immediate

Address

FloatImm =>
-- Short Flo
F: Floatlit;

Direct =>
-=- Direct
Page_Address

Reg =>
-- Register
R_Reg : Regi

ARI =>
-- Auxiliary
ARI _Ar : Aux

IPDA =>

-= Indirect
IPDA_Ar
IPDA_disp

IPDS =>

== Indirect
IPDS_Ar
IPDS_disp

IPrDAM =>
-- Indirect
IPrDAM_Ar
IPrDAM _disp

[PrDSM =>
-=- Indirect
IPrDSM_Ar
IPrDsSM_disp

IPoDAM =>
-- Indirect
IPobAM_Ar
IPoDAM_disp

IPoDSM =>
-= Indirect
IPoDSM_Ar
IPoDSM_disp

IPoDACM =>
-= Indirect
IPoDACM_Ar
IPoDACM_disp

IPoDSCM =>
-- Indirect
IPoDSCM_Ar
IPoDSCM_disp

IPrIA =>

-~ Indirect
IPrIA_Ar : A
IPrIA_Ir : I

IPrIS =>

System.Address;

at Immediate

Data_Page_Offsert:

ster;

Register Indirect
iliary_Register;

with Pre-Displacement
Auxiliary_Register;
Displacement;

with Pre-Displacement
Auxiliary Register;
Displacement;

with Pre-Displacement
Auxiliary_Register;
Displacement;

with Pre-Displacement
Auxiliary Register;
Displacement;

with Post-Displacement
: Auxiliary Register;
Displacement;

with Post-Displacement
Auxiliary_Register;
Displacement;

with Post-Displacement
Auxiliary_ Register;
Displacement;

with Post-Displacement
Auxiliary Register;
Displacement;

with Pre-Index Add
uxiliary Register;
ndex_Register;

Add

Subtract

Add & Mcdify

Subtract & Modify

Add & Modify

Subtract & Modify

Add & Circular Mocdiily

Subtract &

Circular Medify

when

when

when

when

when

when

when

when

when

when

-=- Indirect
IPrIS_Ar
IPrIs_Ir

IPrIAM =>

-- Indirect
IPrIAM_Ar
IPrIAM Ir

IPrISM =>
-- Indirect
IPrISM_Ar
IPriIsM Ir

IPOIAM =>
-- Indirect
IPolAM_Ar
IPoIAM Ir

IPoISM =>
-- Indirect
IPOISM_Ar
IPoISM_Ir

IPoIACM =>
-- Indirect
IPoIACM _Ar
IPoIACM Ir

IPoISCM =>
-- Indirect
IPoISCM_Ar
IPoIsCM_Ir

IPOIABRM =>
-- Indirect
IPoIABRM Ar
IPOIABRM Ir

PcRel =>

-— Pc-relative

APPENDIX F TO MIL-STD-1815A

with Pre-Index Subtract

Auxiliary Register;
Index_Register;

with Pre-Index Add & Modify

: Auxiliary Register;

Index_Register;

with Pre-Index Subtract & Mcdify
Auxiliary Register;
Index_Register:

with Post-Index Add & Modify
Auxiliary Register;
Index_Register;

with Post-Index Subtract & Modify
Auxiliary Register;
Index_Register;

with Post-Index Add & Circular Modify
Auxiliary Register:
Index_Register;

with Post-Index Subtract & Circula
Auxiliary_ Register;

Index_Register;

ry
"y

lodify

with Post-Index Add & Bit-Reverse Modify
Auxiliary Register;
Index_Register;

(a lLabel, for example)

L_Addr: System.Address; -- 'ADDRESS of an Ada .abel

Symbolic_Address =>
-- special use to express the address of an ADA object
S_Addr: System.Address;

Symbolic_Value =>
-- special use to express the value of an ADA cbject
S_Value: System. Address;

end case;
end record;

type Zero_Opnds

Record

Cperation:

is

end Record;

type One_Opnds is

Record

Operation:

Instruction_Mnemonic:

instruction_Mnemonic;

Cperand_l: Operand;
end Record;

5-23

USER MANUAL FOR TARTAN ADA VMS C30

type Two_Opnds is

Record
Operation: Instruction_Mnemonic;
Operand_l: Cperand;
Operand_2: Operand;
end Record;
type Three Opnds is
Record
Operation: Instruction_Mnemonic;
Operand_l: Operand;
Operand_2: Operand;
Operand_3: Operand;
end Record:
type Four_Opnds is
Record
Operation: Instruction_Mnemonic;
Operand_l: Operand;
Operand_2: Operand;
Operand_3: Operand;
Operand _4: Operand;
end Record:
type Five QOpnds is
Record
Operation: Instruction_Mnemonic:;
Operand_l: Operand;
Operand_2: Operand;
Operand_3: Operand;
Operand_4: Operand;
Operand_5: Cperand:

end Record;

type Six _Opnds is

Record
Operation: Instruction_Mnemonic;
Cperand_l1: Operand;
Operand_2: Operand;
Operand_3: Operand;
Operand_4: Operand;
Cperand_5: Operand;
Cperand_6: Operand;

end Record;

end Machine_Code;

5.10.10. Example

with machine_code; use machine_code;
procedure mach_example is
type ary _type is new string(l..5}:

stl,st2: ary_type’

procedure move_string(length: in integer; sil: in ary_cype:
s2: out ary_type) is
-~ move string sl, which is length characters, to string s2
-~ if this routine was inline expanded, instructions shou.d be present
-~ to save and restore any non-volatile registers.
begin
(Symbolic Value, (Reg, R3));

Two_Cpnds’ (LDI, .enrgth’Address),

APPENDIX F TO MIL-STD-1815A

Two_Opnds‘ (LDI, (Symbolic_Address, sl’Address), (Peg, Ar0));
Two_Opnds’ (LDI, (Symbolic_Address, s2‘Address), (Reg, Arl));
Two_Opnds’ (LDI, (IPoDAM, ArO, 1), (Reg, R4));
One_Opnds‘ (RPTS, (Reg, R3}};
Four_Opnds’ (LDI_STI, (IPoDAM, Ar0, 1), (Reg, R4),

(Reg, R4), (IPoDAM, Arl, 1l)):
Two_Opnds’ (STI, (Reg, R4), (IPoDAM, Arl, 1)):

end move_string;
begin

stl := "hello";
move_string(S, stl, st2);

end mach_exampie;

5-25

USER MANUAL FOR TARTAN ADA VMS C30

Assembly code output:

.global mach_example
; mach_example.tmp from src/mach_example.ada
; Ada Sun/C30 Version V11,466293001 Copyright 1989, Tartan Laboratories

; 1986
.global xxml002
.ref ARTSTACKPROLQG
.text

xxml002: PUSH AR3
LDI SP,AR3
PUSH AR3
LDI 20,AR0
CALL ARTSTACKPROLOG
ADDI 14,SP
PUSH RS
PUSH RE
PUSH RC
LDI @DEF1, ARO
STI ARQ, *+AR3 (1)
LDI 1,R1
STI R1, *+AR3(2)
STI R1, *=+AR3(3)
LDI 5,R0O
STI RO, *+AR3 (4)
STI RO, *+AR3 (5) ; line 5
DI 3,RC ; line 26
LDI @DEF2,ARO
LDI AR3,AR1
ADDI 6, AR1
LDI *ARO++(1),R2
RPTB L8

i8: DI *ARC++(1),R2
|1 STI R2,*ARl1++(1)
STI R2, *AR1++ (1)
LDI S, RO ; line 27
LDI AR3, ARQO
ADDI 2,AR0O
LDI AR3, ARl
ADDI 2,AR1
LDI 4,R1

L9: LDI *ARO++(1),R2
CMPI *ARl1++(1),R2
BEQ Lio
LDI 0,R1
BR L12

L10: SUBI 1,R1
BGT L9
LDI 1,R1

Li2: CMPI 1,R1
BNE L13
LDI AR3,R1
ADDI 6,R1
LDI AR3, ARO
ADDI 2, ARC
LDI AR3, AR1
ADDI 2,ARL
LDI 4,R2

Llg DI *ARO++(1),R3
CMPI *AR1++(1),R3
BEQ L15
LDI 0,R2
BR L17

Li5: SUBI 1,R2

5-26

BGT
LDI
L17: CMP1I
BNE
LDI
ADDI
CALL
L7:
DI
LDI
LDI
LDI
POP
RETSU
L13: TRAPU

APPENDIX F TO MIL-STD-1815A

L14

1,R2

1,R2

L13

AR3, R2

11,R2
move_stringSCoO

*+AR3(16),RS
*+AR3{17),RE
*+AR3(18),RC
AR3, SP

AR3

15

; Total words of code in the above routine = 68

.data
DEF1: .word

.Lext

L7

move_string$00: PUSH AR3

DI
PUSH
PUSH
PUSH
DI
STI
oI
LDI
I
DI
R]PTS
Lol

il STI

TI
POP
pop
pop

DI
LDI
LDI
pop
RETSU

; Total words

.data
DEF3: .word

.Lext
.data
DEF2: .word
DEF4: .byte
.byte
.byte

; Total words
; Total words

.end

SP,AR3

AR3

R4

R6

@DEF3, ARO

ARQC, *+AR3 (1)

390,R3 ; line
R1,ARO ; line
R2,AR1 ; line i
*ARO++(1),R4 ; line 16
]R3 ; line 17

*ARC++ (1), R4

R4, *AR1++ (1)

R4, *ARI++ (1)

R2 ; line
R1

RO

e

W B

.ine 18
iine 20

b
LD e S

*+AR3(2),R4
*+AR3(3),R6
AR3, SP

AR3

of code in the above routine = 22

£
o
0

DEF4
104,101 ; he
108,108 ; 11l

111 ;o
of code = 90
of data = 8

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST 1in 1its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test 1is run. The values used for this validation are given
below. The use of the '*' operator signifies a ~ultiplication of the
following character, and the use of the '¢&' character signifies
concatenation of the preceeding and following strings. The values within
single or double quotation marks are to highlight character or string
values:

Name and Meaning Value

$ACC_SIZE 32
An integer 1literal whose value
is the number of bits sufficient
to hold any value of an access

type.

$BIG_ID1 239 = 'A' & "1
An identifier the size of the
maximum input line length which
is identical to $BIG_IDZ except
for the last character.

$BIG_ID2 239 * 'A' & '2°'
An identifier the size of the
maximum input line length which
is identical to $BIG_ID1 ‘except
for the last character.

$SBIG_ID3 120 * "A' & '3' & 119 x ‘A’
An identifier the size of the
maximum input line length which
is identical to $BIG_ID4 except
for a character near the middle.

Name and Meaning

$BIG_ID4
An identifier the size of the
maximum input line length which
is identical to $BIG_ID3 except
for a character near the middle.

SBIG_INT_LIT
An integer
with enough leading
that it 1is the size of
maximum line length.

literal of value 298
zZeroes so
the

$BIG_REAL_LIT
A universal real literal of
value 690.0 with enough leading
zZeroes to be the size of the
maximum line length.

$BIG_STRING1

A string 1literal which when
catenated with BIG_STRING2
yields the image of BIG_ID1.
$BIG_STRING2
A string literal which when
catenated tec the end of
BIG_STRING1 vields the image of
BIG_ID1.
SBLANKS
A sequence of blanks twenty
characters less than the size

of the maximum line length.

$COUNT_LAST

A universal literal

integer

whose value is TEXT_IO.COUNT'LAST.

SDEFAULT_MEM_SIZE
An integer literal whose
is SYSTEM.MEMORY_SIZE.

value

SDEFAULT_STOR_UNIT
An integer literal whose
is SYSTEM.STORAGE_UNIT.

value

TEST PARAMETERS

Value

120 = 'A' & '4d' & 119 * 'A'

237 * '0' & "298"

235 * '0' & "690.0"

LI L) & 120 x 'Al & 11

LRI & 119 * IAI & .1' & T

220 * 1 L]

2147483646

16777216

32

Name and Meaning

$DEFAULT_SYS_NAME

The value of the constant
SYSTEM.SYSTEM_NAME.

$DELTA_DOC
A real literal whose value 1is
SYSTEM.FINE_DELTA.

SFIELD_LAST
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

$FIXED_NAME
The name of a predefined
fixed-point type other than
DURATION.

SFLOAT_NAME
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONG_FLOAT.

$GREATER_THAN_DURATION
A universal real literal that
lies between DURATION'BASE’LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATER_THAN_DURATION_BASE_LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

SHIGH_PRIORITY
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

5ILLEGAL_EXTERNAL.FILE_NAMEI
An external file name which
contains invalid characters.

SILLEGAL_EXTERNAL_FILE_NAME2
An external file name
is too long.

which

TEST PARAMETERS

Value

TI320C30
2#1.08E-31

20

NO_SUCH_FIXED_TYPE

NO_SUCH_FLOAT_TYPE

100_000.0

131_073.0

100

/NON_EXISTENT_DIRECTORY1/FILEl

/NON_EXISTENT_DIRECTORY2/FILE2

Name and Meaning

SINTEGER_FIRST
A universal integer literal
whose value 1s INTEGER'FIRST.

SINTEGER_LAST
A universal integer 1literal
whose value 1is INTEGER'LAST.

$INTEGER_LAST_PLUS_1
A universal integer 1literal
whose value is INTEGER'LAST + 1.

SLESS_THAN_DURATION
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESS_THAN_DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSA_DCC
An integer literal whose value
is SYSTEM.MAX_MANTISSA.

SMAX_DIGITS
Maximum digits supported for
floating-point types.

$MAX_IN_LEN
Maximum input line length
permitted by the implementation.

$MAX_INT
A universal integer literal
whose value is SYSTEM.MAX_INT.

SMAX_INT_PLUS_1
A universal integer literal
whose value is SYSTEM.MAX_INT+1.

Value

-21474836438
2147483647
2147483648

-100_000.0

-131_073.0

10

31

240
2147483647

2147483648

TEST PARAMETERS

Name and Meaning

$MAX_LZ . _INT_BASED_LITERAL
A universal integer based
literal whose value 1is 2#11#%
with enough leading zeroes in
the mantissa to be MAX_IN_LEN
long.

SMAX_LEN_REAL_BASED_LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX_IN_LEN long.

SMAX_STRING_LITERAL
A string literal of
MAX_IN_LEN, including the
characters.

size
quote

SMIN_INT
A universal
whose value is

integer literal
SYSTEM.MIN_INT.

SMIN_TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in

its body.

SNAME
A name of a predefined numeric
type other than FLOAT, INTEGER,

SHORT_FLOAT,
LONG_FLOAT, or

SHORT_INTEGER,
LONG_INTEGER.

SNAME_LIST
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEG_BASED_INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_INT.

TEST PARAMETERS

Value

"2:" & 235 * '0" & "1l:"

"16:" & 233 * '0' & "F.E:"

LI L] & 238 x IAQ & et

-21474836438

32

NO_SUCH_TYPE_AVAILABLE

TI320C30

164FFFFFFFES

Name and Meaning

SNEW_MEM_SIZE
An integer literal whose value
is a permitted argument for
pragma MEMORY_SIZE, other than
SDEFAULT_MEM_SIZE. If there is
no other value, then use
SDEFAULT_MEM_SIZE.

SNEW_STOR_UNIT
An integer literal whose value
is a permitted argument for
pragma STORAGE_UNIT, other than
SDEFAULT_STOR_UNIT. If there is
no other permitted value, then

use value of SYSTEM.STORAGE_UNIT.

$NEW_SYS_NAME
A value of the type SYSTEM.NAME,
other than $DEFAULT_SYS_NAME. If
there is only one value of that
type, then use that value.

STASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task obiect which has
a single entry with one 'IN OUT'
parameter.

STICK
A real literal whose value 1is
SYSTEM.TICK.

TEST PARAMETERS

Talue

16777216

32

TI320C30

96

0.0001

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS
Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005¢C This test expects that the string "-- TOP OF PAGE. -
63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that must appear at the top
of the page.

b. A39005G This test unreasonably expects a component clause to
pack an array component into a minimum size {(line 30).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective

wait alternative (line 31).

d. C97116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation
may use interleaved execution in such a way that the evaluation
of the guards at lines 50 & 54 and the execution of task CHANGING-
_OF_THE_GUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

e. BC3009B This test wrongly expects that circular instantiations
will be detected in several compilation units even though none of
the units is illegal with respect to the units it depends on; by
AI-00256, the illegality need not be detected until execution 1is
attempted (line 95).

f. CD2Aé62D This test wrongly requires that an array object's size
be no greater than 10 although its subtype's size was specified
to be 40 (line 137}.

g. CD2A63A..D, CD2R66A..D, CD2AT3A..D, CD2A76A..D [16 tests] These
tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them
to a derived subprogram (which implicitly converts them to the
parent type (Ada standard 3.4:14)). Additionally, they use the
'STZE 1length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

WITHDRAWN TESTS

CD2A81G, CD2A83G, CD2A84N & M, & CD50110 (5 tests] These tests
assume that dependent tasks will terminate while the main pro-
gram executes a 1loop that simply tests for task termination; this
is not the case, and the main program may loop indefinitely
{lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

CD2B15C & (CD7205C These tests expect that a 'STORAGE_SIZE
length clause provides precise control over the number of
designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

CD2D11B This test gives a SMALL representation clause for a
derived fixed-point type {at line 30) that defines a set of
model numbers that are not necessarily represented 1in the
parent type; by Commentary AI-00099, all model numbers of a

derived fixed-point type must be representable values of the
parent type.

CD50078 This test wrongly expects an implicitly declared sub-
program to be at the the address that is specified for an un-
related subprogram {(line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests] These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

CD7105A This test requires that successive calls to CALENDAR.-
CLOCK change by at least SYSTEM.TICK; however, by Commentary
AI-00201, it is only the expected frequency of change that must
be at least SYSTEM.TICK--particular instances of change may be
less (line 29).

CD72038, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by
the WG9 ARG.

CD7205D This test checks an invalid test objactive: it treats
the specification of storage to be reserved for a task's
activation as though it were like the specification of storage
for a collection.

CE2107T This test requires that objects of two similar scalar
types be distinguished when read from a file--DATA_ERROR 1is
expected to be raised by an attempt to read one object as of
the other type. However, it is not clear exactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 90)

CE3111C This test requires certain behavior, when two files are

associated with the same external file, that is not required by

VITHDRAWN TESTS

the Ada standard.

CE3301A This test contains several calls to END_OF_LINE &
END_OF_PAGE that have no parameter: these calls were 1intended
to specify a file, not to refer to STANDARD_INPUT (lines 103,
107, 118, 132, & 136).

CE34118B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUT_ERROR 1is raised
by a subsequent PUT operation. But the former operation will
generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

CTHUPILER AWD LINRKER OPTIOHS

APPENDIX E

COMPILER AND LINKER OPTIOWS

Chapter 3
Compiling Ada Programs

The ADAC30 command is used to compile and assemble Ada compilation units.

3.1. THE 2DAC30 COMMAND FORMAT
The ADAC30 command has this format:
ADAC30 (/qualifier ((option, ...)...]1] file-spec(/qualifier{ (opton, ...)...]]

The parameter file-spec is a source file name. Since the source files need not reside in the directory in which
the compiladon takes piace, file-spec must include sufficient directory information to locate the file. If no
extension is supplied with the file name, a default extension of . ADA will be supplied by the compiler.

aDAC30 will accept only one source file per compilation. The source file may contain more than one
compilation unit, but it is considered good practice (o place only one compilaton unit in a file. The compiler
sequentally processes all compilation units in the file. Upon successful compilation of a unit,

o the Ada program library ADA . DB is updated to reflect the new compilation time and any new dependencies
* one or more separate compilation files and/or object files are generated

If no errors are detected in a compilation unit, The compiler produces an object module and updates the library.
If any error is detected, no object code file is produced, a source listing is produced, and no library entry is made

for that compilation unit. If warnings are generated, both an object code file and a source listing are produced,
and the library is updated.

3.2. COMMAND QUALIFIERS

Command qualifiers indicate special actions to be performed by the compiler or special output file properties.
The following qualifiers are available:

/CROSS_REFERENCE
/NOCROSS_REFERENCE (default]
Controls whether the compiler generates a cross-reference table of linknames for

the compilation unit. The table will be placed in the file unir-name . XRFE (See
Section 3.5).

/ERROR_LIMIT=n Stop compilation and produce a listing after n errors are encountered, where n is
in the range 0..254. The /ERROR_LIMIT qualifier cannot be negated.

/FIXUP_MACHINE_CODE (default]
/NOFIXUP_MACHINE_CODE
. When package MACHINE_CODE is used, controis whether the compiler attempts
10 alter operand address modes when those address modes are used incorrectly.
When /FIXUP_MACHINE_CODE is specified on the command line, the compiler
will possibly generate extra instructions o fix incorrect addressing modes in the
machine code insertion. The compiler will be abie to “fixup” most incorrectly

BETA RELEASE 1.0 31

USER MANUAL FOR TARTAN ADA YMS C0

specified operands; however, cerain illegal insouction/operand combinations may
cause the compiier to crash. When /NCFIXUP_MACHINE _CODE is used, the
specificadon of incorrect operands for an instruction is considered to be an error.
In this case, no code is generated and a listing is produced.

/LIST(=opaon]
/NOLIST Controls whether a listing file is produced. If produced, the file has the source file
name and a . LIS extension. The available opuons are:

ALWAYS Always preduce a listng file
NEVER Never procuce a listing file, equivalent to /NOLIST
ERRCR Produce a listing file only if a compilation error or wamning occurs

When no form of this qualifier is supplied in the command line, the default
condition is /LIST=ERRCR. When the LIST qualifier is supplied without an
option, the default option is ALWAYS.

/MACHINE_CODE

/NOMACHINE_CODE {default} .
Controis whether the assembly code files produced by the compiler are retained in
the user’s directory after compilation is compiete. This qualifier is useful if the
user wishes to inspect the compiier output for code correcmess and quality. The
default is /NOMACHINE which deletes these machine language files.

/NOENUMIMAGE " Controls whether compiler omits data segments with the text of enumeration
literais. This text is normally produced for exported enumeration types in order to
support the ' IMAGE ataibute. You should use /NCENUMIMAGE only when you
can guarantee that no unit that will import the enumeration type will use ' IMAGE.
However, if you are compiling a unit with an enumeration type that is not visible
10 other compilation units, this qualifier is not needed. The compiler can recog-
nize when / IMAGE is not used and will not generate the supporting swrings.The
/NOENUMIMAGE qualifier cannot be negated.

/QPT=n Controls the level of optimizaton performed by the compiler, requested by n. The
/OPT qualifier cannot be negated. The opumization levels available are:

n=Q Minimum - Performs context determination, constant folding, al-
gebraic manipulation, and short circuit analysis.

n=1 Low - Performs level 0 opumizatdons plus common subexpression
climination and equivalence propagation within basic blocks. It also
optimizes evaluation order.

n=2 Space - This is the default level if none is specified. Performs level 1
optimizations plus flow analysis which is used for common sub-
expression elimination and equivalence propagaton across basic
blocks. It also performs invariant expression hoisting, dead code
elimination, and assignment kiiling. Level 2 also performs lifetime
analysis to improve register allocadon. It also performs inline expan-
sion of subprogram calls indicated by Pragma INLINE which ap- L
pears in the same compilation unit. k oo

3-2 BETA RELEASE 1.0

/PHASES
/NOPHASES [default]

COMPILING ADA PROGRAMS

n=3 Time - Performs level 2 optimizations pius inline expansion of sub-
program calls which the opdmizer decides are profitable 10 expand
(from an execution time perspective). Other optimizadons which
improve execudon time at a cost to image size are performed only at

this level.

Controls whether the compiler announces each phase of processing as it occurs.

/ SUPPRESS(=(option, ...))

Suppresses the specific checks identified by the opdons supplied. The parentheses
may be omitted if only one option is supplied. The /SUPPRESS qualifier has the
same effect as a global pragma SUPPRESS applied to the source file. If the
source program also contwins a pragma SUPPRESS, then a given check is sup-
pressed if either the pragma or the qualifier specifies it; that is. the effect of a
pragma SUPPRESS cannot be negated with the command line qualifier. The
/SUPPRESS qualifier cannot be negated.

/WARNINGS [default)
/NOWARNINGS

The available options are:
ALL

ACCESS_CHECK
CONSTRAINT_CHECK

DISCRIMINANT_CHECK
DIVISION_CHECK

ELABORATION_CHECX
INDEX_CHECK
LENGTH_CHECK
OVERFLOW_CHECX

RANGE_CHECK
STORAGE_CHECK

Suppress all checks. This is the default if the
qualifier is supplied with no option.

As specified in the Ada LRM, Section 11.7.
Equivalent of (ACCESS_CHECK, INDEX CHECK,
DISCRIMINANT_CHECK, LENGTH_CHECK,
RANGE_CHECK).

As specified in the Ada LRM, Section 11.7.

Will suppress compile-ime checks for division by

zero, but the hardware does not permit efficient run-
time checks, so none are done.

As specified in the Ada LRM, Secton 11.7.
As specified in the Ada LRM, Section 11.7.
As specified in the Ada LRM, Section 11.7.

Will suppress compile-ime checks for overflow, but
the hardware does not permit efficient runtime
checks, so none are done.

As specified in the Ada LRM, Section 11.7.

As specified in the Ada LRM, Section 11.7. Sup-
presses only stack checks in generated code. not the
checks made by the allocator as a result of a new
operation.

Controls whether the warning messages generated by the compiler are displayed
to the user at the terminal and in a listing file, if produced.

BETA RELEASE 1.0 33

USER MANUAL FOR TARTAN ADA VMS C30

3.3

. WHAT UPDATES ARE MADE TO THE PROGRAM LIBRARY

Simply stated, upon successful compilation of a unit,

» the Ada program library ADA . DB is updated to reflect the new compilation time and any new dependencies
 one or more separate compilation files and/or object files are generated. ’

However, more complicated situations can arise. The following items list the types of compilation units and
address the range of situations that can arise.

« In all cases the transitive closure of the dependencies of a compilation unit in the library must be consis-
tent; that is, the unit must be compiled consistendy as defined in section 10.3 of the LRM. A secondary
unit can have the specificaton of its ancestor in its context clavse, although it is redundant. For a more
complete discussion of closure, see Section 4.5.

* A package specification repiaces any library unit in the library with the same name, or is simply added if
no such library unit exists.

¢ A package body replaces any existing body of a package specificaton with the same name. If no such
specification exists, an error message is issued. If such a specification exists, but the body does not match
the specificaton in the sense of Section 7.1 of the LRM, error messages are issued.

* A subprogram specification replaces any library unit in the library with the same name, or is simply
added if no such library unit exists,

¢ A subprogram body replaces any existing body of a (generic or non-generic) subprogram specification
with the same name. If no such specification exists, an implicit specification is derived from the body and
entered into the library. If such a specification exists, but the body does not match the specification in the
sense of Secton 6.3 of the LRM, error messages are issued. If any library unit other than a subprogram
specification exists with the same name, the new implicit specification replaces that library unit.

» Generic package specifications and subprogram specifications act as explicit specifications, i.e., cor-
responding bodies must match their specifications. If a generic unit is instanuated, a dependency is created
on the generic body. .

* Generic instances compiled as library units are treated in the same way as their non-generic counterparts.

¢ When an instantiation repiaces the body of a library unit, all secondary units of that library unit are now
obsolete and are deleted.

* A subunit with a parent unit conaining an appropriate body stub existing in the library replaces any
subunit with the same subunit name, comprised of the stub’s name and the name of the ancestor unit, or is
simply added, if no such subunit exists. A unit conwaining stubs will only be entered into the library if the
simple names of all its stubs are unique for all stubs derived from its common ancestor. An error message
is issued if no parent unit exists in the library, the parent unit exists but does not have a relevent stub, or the
parent unit and body stub exist but the subunit does not match the stb or its specification.

¢ When the parent unit of a subunit is recompiled and the parent no longer contains a stub for the subunit,
the subunit, which is now obsolete, is deleted.

3.4. FILES PRODUCED OR USED BY THE COMPILER

Files with the following extensions are contained in the standard packages directories or can be created by

compiling or linking an Ada program; the file name is the name of a compilation unit, but may be compressed to

con

34

form w0 length limitations of VMS file management
ASM The assembly language file produced by compiling an Ada unit body with
/MACHINE_CODE.
30D Representation of the body of a generic, and/or the visibility information available to

any subunits. body-name.BOD is read when compiling a program that instangates
body-name, or is a subunit of body-name.

BETA RELEASE 1.0

(=

COMPILING ADA PROGRAMS

DI Representation of a unit specification. wnit-name . DI is read during the compilation of a
program that does a “with unit-name”.

LIS A listing produced by the Ada compiler.

STOF The object file produced by compiling an Ada unit specification with
/MACHINE_CODE.

TQF The object file created by compiling an ADA unit body.

XRF Cross reference files that relate Ada names with compressed and disambiguated names

used in the assembly language file.
XTCF Executable image produced by the ALBC30 LINK command.

The following are the extenstons used for files that are created temporarily during the linking/compiling
process:

ETQF Object file containing calls for elaboration of the program
TMP Temporary file used when creating . ASM files

Additionally, temporary files are created during compilaton that have the same (ile extensions listed above, but
also have a unique 8 digit hexadecimal number concaienated to the extension. These files will appear in the
directory only if a link or compiladon is abnormally terminated, and should be deleted by the user.

Files having the following extensions are controlled by the librarian and compiler: DI, 30D, STOF, and TCF.
The user should not use these extensions for any other purpose. The ALBC30 DELETE command will automat-
cally delete these files when the respective unit is deleted from the library. If the user deletes these files in any
other way, subsequent invocations of the compiler or librarian will have unpredictable results, including fatal
crashes. We therefore advise that the user never delete these files by operaung system commands.

3.5.THE CROSS REFERENCE MAP OF LINKNAMES

A cross reference of symbolic names to linknames is generated with t. jualifier /CROSS_REFIRENC
the ADAC30 command. The cross-reference file has the extension . XRE; the file name is that of the ¢ ompxled
unit, but possibly compressed o0 match YMS restrictions, as shown in the example below.

For longer unit-names, the cross reference file generated may not have an immediately obvious name, in

order 10 find it, it may be necessary to search the current working directory for a recenty produced file with
extention XRE.

Example:
File CREXAMPLE _SPEC.ADA

package THIS_IS_A_LONG_PACKXAGE_NAME is
package ANOT'-!ER LONG ?AC‘(AG:. NAME is
procedure LONG_PROCEDURE NAME _THAT_WILL_HAVE_SHORT_LINKNAME;
end ANOTHER_ LONG _PACKAGE \IAME.
end THIS_IS_A_ LONG ?AC‘(AG:. \IAME

File CREXAMPLE_BODY.ADA

package body THIS_IS_A_LONG_PACKAGE_NAME is
package body ANO'I“«!E:R LONG ?AC‘(AG:. _NAME is separate:
end THIS_IS_A_LONG ?AC.{AG::. \IAME

File CREXAMPLE . SEP

BETA RELEASE 1.0 3-5

USER MANUAL FOR TARTAN ADA VMS C30

separate (THIS_IS_A_LONG_PACKAGE_NAME)
package body ANOTHER_LONG_PACXAGE_NAME is
procedure LONG_PRCCEDURE_NAME_THAT WILL_HAVE_SHCRT_LINKNAME is
begin
nuil;
end LONG_PROCEIDURE_NAME_THAT_WILL_HAVE_SHORT_LINKNAME:
end ANOTHER_LCNG_PACKAGE_NAME:
The commands:

$ ADAC30 CREXAMPLE SPEC.ADA
S ADAC30 CREXAMPLE 30DY.ADA
S ADACJ0/CROSS_REFERENCE CREXAMPLE.SEP

produce the file THSSLNGPCXGNMSNTHRLNGPCXGNMEQOL . XRF which appears below:

---- Linkname Cross Reference Map thsslngpckgnmSnthrlngpckgnme(OQdl.xrf ----
this_is_a_long_package_name=>xxthsskgnmQ0l at 0
this_is_a_long_package nameYthis_is_a_long_package_name=>this_is_a_long
_Package nameYQ0 at 1

this_is_a_long_package_nameYanother long_package_nameY¥another_long_package

_name=>another_long_package_nameY00 at 2
this_is_a_long_package_nameYanother_long_package_nameYlong_procedure_name
_that_will have_short_linkname=>xxthsskgnm00lY¥lngprcdtlnknmy(0 at 3

In the above cross reference file:

eThe first line represents the name for the elaboraton code for the package
THIS_IS_A_LONG_PACXAGE_NAME. The symbols represenung the specification and body have
respectively YDECLARE and Y2ODY postpended.

» The second line is the name of the data segment for the package THIS_IS_A_LONG_PACXAGEZ_NAME.

» The third line is the name of the data segment for the package ANOTHER _LONG_PACKAGE_NAME.

¢ The name.for the LONG_P ROCSDURE_NAME_THAT_WILL_HAVE_SHORT_LINKNAME procedure is on
the fourth line.

eThe fifth line is the name for the elaboration variable for the procedure
LONG_PROCEDURE_NAME THAT_WILL_HAVE_SHORT_LINKNAME. Ada rules require thas the body
of a subprogram is already elaborated before it can be called. If it is not already elaborated the exception
PROGRAM_ERROR must be mised. For each subprogram that may require an elaboradon check the
compiler generates a variable that is used to record that the body of the subprogram has been elaborated.
The name of the elaboration variable is generated by postpending YGOTO to the name of the subprogram.
The elaboration variable name is then subject to the same compression algorithms as the rest of the
symbols in the program.

The VMS command DIR/DATE *.XRF will help you locate the cross reference listing. In order to view the
contents of the cross reference file, make sure that your terminal is set 10 wrap around mode. The idenufier
appearing at the left is the identifier that appears in the Ada source code. The name to the right of the ‘=>" is the
linkname that is supplied for that identifier to the Tartan Linker. The ‘‘at <number>'’ gives the line number in
the source code where the idendfier is found. A Cross Reference Map can be used to verify ihat there are no
conflicting linknames in a program library that uses subprograms written in another language (see Section 5.1.2.2
that discusses the pragma FOREIGN_BODY). [t is also useful for assembly-level debugging.

36 BETA RELEASE 1.0

COMPILING ADA PROGRAMS

3.6. COMPILER AND LIBRARY DIAGNOSTIC MESSAGES

The compiler issues diagnostic messages that appear at your terminal and in the optional compiler-generated
listing. Most messages issued by the Tartan Ada Compiler contain a reference to the Ada LRM section and
paragraph relevant to the error. This section explains the kinds of diagnostic messages the compiler generates,
how the compiler atempts 10 deal with problems that caused the messages and how you should go about
correcting a program.

A corr prehensive listing of all the messages the compiler can issue is conuained in Appendix Section A.l.
Messages in the range 6000 to 6999 are issued by the library, not the compiler.

3.6.1. Message Severity Levels

Every message issued by the compiler is assigned a severity leve! that indicates how serious Lhe problem is.
There are four message categories.

1. A faial error is serious encugh to suspend compilation immediately after the error is discovered. This is
the only class of error that inhibits further analysis of the source program. An example of a fatal error
message is:

Fatal 6801: <library administration file name> is incompatible
wizh this version of the library.

2. An error is serious enough to prevent the generation of object code, but the compiler atiempts 10
recover from the error and continues checking the source for additional errors. An example of an error is:

rzor 2060: This record field has already been assigned
in the aggregate (4.3 (6))

3. A warning does not stop the compiler from generating object code, but may still be an indication of
a programming error. When a waming occurs, the code generated may not be what you intended. An
examplie of a warning is:

Warn 4001: Elaboration of this subtype will raise
constraint_error at runtime (3.3.2).

4. An informational message provides you with additional information when you use some library
commands. See, for example, Section 4.6. Informational messages are not issued by the compiler. Aa
example of an informational message is:

Info 6011: The files reguired for linking by <unit_dnd>
<unit_name> are consistent (10.3).
3.6.2. Message Formats

The format of messages appearing on the standard error output and in the listing file is similar. Here is an
example:

S| sl : string(l .. disczrim):;
61 82 : string(l .. 2 =~ disczim):
~1
= 1 Error 2204: A discriminant may not be used in this
baladed expression (3.7.1 (6))
71 end record:

The numbered lines in the example are lines from the source program. The source line in question is followed by
the messages and potnters to the exact location of the problem.

On the terminal, horizonwal lines are used to separate messages coming from different parts of the source
program, for example:

BETA RELEASE 1.0 347

USER MANUAL FOR TARTAN ADA VMS C30

51 sl : string(l .. discrim);
61 82 : string(l .. 2 * discrim);
~1
*xx] Error 2204: A discriminant may not be used
e in this expression (3.7.1 (6))
7] end record:
14| null:;
151 when numeric_error | constraint_error =>
~1
*** 1 Error 3112: A given exception may only appear once
ool in a handler (11.2 (S))
16} null;

In a listing file, a message chain accompanies each diagnostic message. The message chain indicates where
in the program the next and previous messages occur, for example:

Ada C30 Beta 1.0 Copvright 1989, Tartan Laboratories Incorporated
x Pirst diagnostic is on line 6

l!lprocedure sample_program is

21 subtype small_int is integer range 1 .. 10;
3
41 type rec{discrim : small_int) is record
S| sl : string(l .. discrzim);
61 s2 : string(l .. 2 * discrim);
~1
*** 1 Error 2204: A discriminant may not be used in this
*xx expression (3.7.1 (6))
*** Next diagnostic is on line 13
71 end record:
g8 .
9] x : rec(3);
10ibegin
il x := (6, "12345", "abcde"):
12lexception
131 when constraint_error =>
14! null; ‘
151 when numeric_error | constraint_erzor =>
~1

**xx Previous diagnostic was on line 6
x*» 1 Error 3112: A given exception may only appear once

xxw in a handler (11.2 (5))
16| null;
17iend sample program;
18]

*** last diagnostic was on line 15

**= Errors: 2, Warnings: 0
The message chain is especially helpful when working with large listings.

Whether on the standard error ouwput or in a listing file, the list of messages is tfollowed by a summary line
containing a count of the number of errors in each severity class, for example:

? Erzors: 2, Warnings: 1

(]

3.8 BETA RELEASE 1.0

COMPILING ADA PROGRAMS

3.6.3. Listing Summary

When a listing file is produced, the numbered listing pages are preceded by a summary page that presents data
and sadstics about the compilation. The following is an exampie of the summary page.

Listing Summarv Revort

Date of listing:

Source file name:

22-JUL-1989 17:38:14.00

USERO1l: (ADA.VMS]FO02.ADA: 2

Source file lines: 52

Compiled by: JONES

Command line used: ADAC30/LIST=ALNAYS F0OQ2.ADA
Code s3ize produced: 154 bytes

Data size produced: 0 bytes

Elapsed real time: 00:00:21.8¢0

Elapsed CPU time: 00:00:06.95

Buffered I/O: 253

Direct I/0: 236

Page faults: 1213

3.6.4. Message Generation

The Tartan Ada Compiler has many internal phases, any one of which can issue diagnosuc messages.
Messages are collected in memory until the time comes w0 generate the message listing. At that ume, all the
messages are sorted by their position in the source program and are printed.

When you examine a program lisung conuining many messages, remember that the order in which the
messages appear in the listing is not necsssarily the order in which the messages were generated. This fact may
be important when one error causes another. It is advisable to start correcting your program according to the
messages having the lowest numbers and work towards the higher numbers, making an intermediate compilation
if necessary.

3.6.5. About Syntax Errors and Recovéry

The Tartan Ada Compiler incorporates a parser which is capable of analyzing and correcing ail syntactic
errors in the source program. This section describes the various error messages that may be issued by the parser.
When a syntax error is detected, no object code is generated.

The parser divides the source program text into lexical elements, or tokens, such as idenufiers, reserved
words, constants, etc. When the parser encounters a token that it does not expect, it issues an error message that
indicates the position at which the error was detected and the action that was taken to correct the error. Here are
some examples of the recovery actions:

In the example below, the trailing **$"* does not match any of the valid tokens of Ada and so the parser
deletes it

l)procedure bad_syntax is

2] subtype byte is integer range 0 255: §
~1

L & & 4

1 Error 104: Ill-formed token deleted.
31 X : integer;

The compiler also deletes a token occupying an inappropriate place. In the following example, it deletes the
superfluous wken “‘while'".

Sibegin
61 for while i in 1 10 loop
~1
#*xx 1 Error 121: Parse error; token deleted.
71 X = x + 1;

BETA RELEASE 1.0 3.9

USER MANUAL FOR TARTAN ADA YMS C30

In the following example, the missing symbol **;'* is inserted, and parsing continues undisturbed.
4] i : integer
5] b : boolean:
“1
» 1 Error 120: Parse error; token ";" inserted.
6| begin
In the following example, the syntactcally incorrect symbol **:'” is replaced by the proper symbol **;"".
17 end loop:
18] x = 15:
~1
=x 1 Error 122: Parse error; this token deleted, ;" inserzed.
194

3.6.5.1. Multi-Token Insertion

The parser may also insert several tokens in an auempt (o repair the constructs whose closing tokens (e.g.,
“‘end i£:'") are missing. An example of this recovery is:

10} end if;
111 end loop:;
~1,2,3
x 1 Error 120: Parse error; token "if" inserted.
x 2 Error 120: Parse error; token ";" inserted.

x 3 Error 120: Parse error; token "end"” inserted.
121end bad_proc:

In this example an additional ‘‘end if;'' was missing. Notc however, that the maximum number of
tokens that can be mscned in succession is limited.

3.6.3.2. Complex Recovery Strategy

If all the simple fix-up and muiti-token insertion techniques above are unsuccessful, the parser attempts a
more massive correction by deleting many successive or preceding phrases of the program. Foe example,

S| y 1= 6; case bad_case is
XXX ERARX XXX RN
6% where x=v => x = 3;
~1
***] Error 123: Parse erzor; ill-formed "<statement>",
T* when 2 := x = 5;

The caret () locates the place where the parser detects an error. The compiler indicates the elided portion of
the source program by underlining with asterisks. In the first (and possibly the last line), only the tokens deleted
are underlined. The lines following the first line are not underlined, but when the entre line is deleted, the
symboi after the line number (e.g., lines 6 and 7) changes from a vertical bar (1) 10 an asterisk. (The above case
statement contained three errors. The closing ‘‘end case; " was also deleted.)

In cases like the above example, when the parser has deleted more than one token, the error message is

Error 123: Parse error; ill-formed "<aagme>",

The name contained within the angle bracket pair is that of the grammatical element that the parser expected to
find in this posidon. Occasionally, the deletion of tokens starts at a point textually preceding the reported error
because no legal interpretation of an enclosing construct can be found due to the error within the construct.
Under rare circumstances, you may see an error message
Ezror 127: Parse error; unexpected end-of-file.

pointing to a token within the program, with the rest of the program marked as deleted. This message points to
the position in the program where the parser detected a syntax error. It indicates that, despite all azempts, the
error recovery was unsucessful untl the end-of-file was reached. In this case, correct all the errors reported and
examine the program for missing keywords that end complicated syntactic constructs: also, especially examine
the few lines that precede and follow this message for syntactc errors.

3-10 BETA RELEASE 1.0

Chapter 4
The Ada Program Library

The Tarman Ada VMS C30 Program Librarian (ALBC30) implements the Ada Language requirement for
separate compilation and dependency conaol. The program library direciory hoids all necessary compilation
units, including packages that are part of the applicadon under development and any standard packages such as
those for [/O.

The library administradon file is a single file ADA . DB that records the dependencies among these units and
their compilation history.

The term Ada program librarian refers 10 executable code that manipulates the library; that is, subcommands
of the library command ALBC30 that are discussed in this chapter.

A compilaton unit in a library (library uni¢ or secondary unit) is identfied by its Adg-name, which is either a
simple name (an identifier) or the simpie name of a subunit and the name of its ancestor. More informadon about
Ada compilation units and program libraries is given in Chapter 10 of the Ada Language Reference Manual. The
library administraton file does not conain the text of compilation units; it contains only references to files that
contain the compilation units in their source and compiled forms.

4.1. THE ALBC30 COMMAND
The ALBC30 command invokes the Ada Program Libranian to perform the following operatons:

« Create an Ada program library

+ Delete unit(s) from an Ada library or delete the entire hbmry

» Check the closure of a library unit

» Describe the status of a library unit by generating a dependency graph
« [nsent a non-Ada object into the library as the body of a package.

« Link an executable image.

The format of the ALBC30 command is
S ALBC30 subcommand(/qualifier...] [parameter...) [/qualifier...]
Each operation is requested through a subcommand. All ALBC30 subcommands except CREATE assume

that the user's Ada library exists in the current directory. The following sections discuss the subcommands and
the ir appropriate qualifiers and parameters.

4... THE CREATE SUBCOMMAND

The CREATE command creat=s an initialized Ada library daiabase file, ADA . DB, and places it in a directory
that has been created to hold the library database file and files required by the library, i.e., separate compilation
and ail compiler-generated files. Standard system and Ada I/O packages are placed in the library directory and
references o them are recorded in ADA.. DB.

The format of the CREATE command is

$ ALBC30 CREATE (directory-spec]

The parameter directory-spec specifies the name of the existing subdirectory in which the library is 0 be
located and must be supplied only if the library directory is not the current directory. [f the directory specifica-
tion supplied is not an existing directory, a message will be issued indicaung that the directory was not found and
the library files will not be created.

BETA RELEASE 1.0 4.1

USER MANUAL FOR TARTAN ADA VMS C30

The directory specification must contain the name of or a logical name for an existing directory. A device
name is optional. If a subdirectory is used. the names of the directory levels should be separated with periods.
No wildcard characters are allowed in the directory specificaton.

4.3. THE DELETE SUBCOMMAND

The DELETE command deletes the specified Ada entity, depending upon the suppiied parameter. The
operadons that may be performed are:

» Remove the specificadon, body and all subunits of a library unit from the library
» Remove the body of a library unit and all its subunits from the library

¢ Remove a subunit from the library

¢ Remove an endre library

The format of the DELETE command is
$ ALBC30 DELETE (/qualifier..] [Ada-name...] (directory-spec]

One or more Ada-name(s) or a directory-spec may be supplied as parameter(s). A qualifier may be supplied to
further specify the unit(s) to be deleted from the library or to request an additional action to be taken during the
deletion process.

The wildcard characters of "*" and "%" are recognized in an Ada-name. The character "*" matches any
sequence (including the empty sequence) of characters in an Ada-name. The character "%" matches any single
character in an Ada-name. Wildcards are used w build regular expressions. When one of the qualifiers /BoDY,
/SPEC, or /SUBUNIT is used, and a wildcard is present in the parameter supplied, every compilation unit in the
library whose name matches the regular expression and is included according to the qualifier will be deleted.
Wildcards are not allowed with the / LIBRARY qualifier.

The following command qualifiers may be used:

/B0DY Deietes the body and all subunits that have this body as an ancestor. The Ada-name
supplied as a parameter must be a library unit name. All compiler-generated files are
deleted with the unit. Compiler-generated files do not include those created by the
librarian with the LINK subcommand. /B0QDY is the default if no qualifier is supplied.

Format:
S ALBC30 DELETE/BODY library-unit-name
/LIBRARY Deletes the entire library identified by a directory name supplied as a parameter, includ-

ing all compiler-generated files and the file ADA.DB. No wildcards may be used in the
directory name. Format

$ ALBC30 DELETE/LIBRARY directory-spec
If the library to be deleted is in the current working directory, the command may be
given as:

$ ALBC30 DELETE/LIBRARY []

/LOG Causes a message (0 be written (0 the standard output device when a unit is deleted. The
/ LOG qualifier may be used in combination with any other qualifier.

/SPEC Deletes the specification, body and all subunits that have this specification as an ances-
tor from the library. The Ada-name supplied as a parameter must be a library unit name.
All compiler-generated files are deleted with the unit. Format

$ ALBC30 DELETE/SPEC library-unit-name
/SUBUNIT Deletes the subunit named and all -of its subunits, in a transiive manner. Two

Ada-names must be supplied as parameters: the ancestor and the simple name of the
subunit 10 be deieted (LRM 10.2]. Format

$ ALBC30 DELETE/SUBUNIT ancestor simple-name

4.2 BETA RELEASE 1.0

THE ADA PROGRAM LIBRARY

Examplie:
To delete:
separate (ONE.TWO.THREE.FOUR) -- unit ONE is ancestor
procedure FIVE is
begin
nuil;
end FIVE;
from the library, the command is
ALBC30 DELETE/SUBUNIT ONE FIVE
Example:
The following example illustrates the use of /DELETE with several qualifiers and wildcards where ap-
propriate.

For a library that contains the following units:

Package Spec Radar_Screen

Package Body Radar_Screen

Package Spec Radar Detector

Package Body Radar Detector

Subprogram Spec A

Separate Subprogram body Radar_ Screen.RangeRings
Separate Subprogram body Radar_Screen.Object
Separate Subprogram body Radar_Screen.Object.Size

AL3C30 DELETE/SPEC *
deletes all units in the library, including standard packages, Tartan runtime packages,
support packages, and the file ADA . DB. Thus, when used with DELETE, /SPEC *isa
. synonym for /LIBRARY
ALBC30Q0 DELETE/SPEC %
deletes subprogram Spec A

ALBC30 DELETE/SUBUNIT RADAR_SCREEN *
deletes the last three units listed

ALBC30 DELETE/BODY RADAR_SCREEN
deletes package body radaz_screen as well as the last three units listed

ALBC30 DELETE/SUBUNIT » »
deletes the last three units listed

ALBC30 DELETE/SPEC RADAR~*
deletes ail units except Subprogram Spec A

4.4. THE DESCRIBE SUBCOMMAND

The DESCRIBE command describes the status of a unit by displaying its dependency graph. The information
shown includes the name, type, time of compilation, state of residence (local or foreign), source and object file
specifications, dependencies (if any), and subunits (if any).

The format of the DESCRIBE command is

$ ALBC30 DESCRIBE(/qualifier..] [Ada-name...]

where one or more Adg-name(s) supplied as parameters specify the library unit or subunit t0 be described. A
qualifier may be supplied o further specify the unit(s) W be described or 1o request an additonal action to be
taken as part of the process.

The wildcard characters of "*" and "%" are recognized in an Adg-name. The character "*" maiches any
sequence (including the empty sequence) of characters in an Ada-name. The character "%" matches any single
character in an Ada-name. Wildcards are used t0 build regular expressions. When one of the qualifiers /B80DY,

BETA RELEASE 1.0 4.3

Jo——

USER MANUAL FCR TARTAN ADA VMS C30

/SPEC, /ANY or /SUBUNIT is used, and a wildcard is present in the parameter supplied, every compilation unit
of the specified category in the library whose name matches the regular expression will be described. Addition-
ally, the qualifier /ALL can be used with no parameters.

The following command qualifiers may be used:

/ANY Describes both the specification and body units for the specified library unit, but will not
describe subunits. The Ada-name supplied as a parameter must be a library unit name.
/ANY is the default if no qualifier is supplied. Format
$ ALBC30 DESCRIBE/ANY library-unit-name
/ALL Describes all library units and subunits. No Ada-name should be specified. Format:
$ ALBC30 DESCRIBE/ALL
/BODY Describes only the body unit for the specified library unit. The Ada-name supplied as a
parameter must be a library unit name. Do not use in conjunction with /SPEC: 0 get
descriptions of both body and specification, use /ANY. No information about bodies
resulting from generic instantiations is given when the /BODY qualifier is given. To get
such information use /SPEC or /ANY. Format
$ ALBC30 DESCRIBE/BODY library-unit-name
/QUTPUT(=file-spec]
Places the output of this command in the file specified. If no file has been given, output
defaults to a file having the name DEPENDENCY . TXT. The default output device is the
user's terminal or log file (if invoked from a batch job).
/SPEC Describes only the specification unit for the specified library unit The Ada-name
supplied as a parameter must be a library unit name. Do not use in conjuncdon with
/BODY; to get descriptions of both body and specification, use /ANY. Format
$ ALBC30 DESCRIBE/SPEC library-unit-name
/SUBUNIT- Describes a subunit which must be identified by two parameters, the name of the ances-
tor and the simple name of the subunit (LRM 10.2]. Format
$ ALBC30 DESCRIBE/SUBUNIT ancestor simple-name
Example:
To describe:
separate (ONE.TWO.THREE.FOUR) ~- unit ONE is ancestor
procedure FIVE is
begin
nuil;
end FIVE;
the command is
ALBC30 DESCRIBE/SUBUNIT ONE FIVE
Examples:
1. The ALBC30 DESCRIBE/SPEC command displays the status of the specification of the library unit
adatime.
$ ALBC30 DESCRIBE/SPEC adatime
displays
-4 BETA RELEASE 1.0

s

W/

wa

THE ADA PROGRAM LIBRARY

Name: adatime

Type: Package Spec

Time: 2-AUG-1988 15:47:05.00
Residence: local

Source File Name: SRC:ADATIME.ADASPEC
Symbol File Name: adatime.di
Dependencies: none

2. The ALBC30 DESCRIBE/BODY command displays the status of the body of the library unit adatime.
$§ ALBC30 DESCRIBE/BODY adatime
displays
Name: adatime
Type: Package Body
Time: 2-AUG-1988 15:47:05.00
Residence: local
Source File Name: SRC:ADATIME.ADABODY
Cbject File Name: adatime.TOF
Dependencies:
Type: Package Spec
Name: adatime
Subunits: none

3. The following example illusates the use of /DESCRIBE with wildcards in a library containing subunits.
For a library that contains the following units:

Package Spec Radar_Screen

Package Body Radar_Screen

Package Spec Radar _Detector

Package Body Radar Detector

Subprogram Spec A

Separate Subprogram body Radar_Screen.RangeRings
Separate Subprogram body Radar_Screen.Cbject
Separate Subprogram body Radar_Screen.Object.Size
ALBC30 DESCRIBE/ALL

Will describe all of the compilation units in the library

ALBC30 DESCRIBE/ANY *
Will describe the first five units

ALBC30 DESCRIBE/SUBUNIT * =
Will.describe the last three units

ALBC30 DESCRIBE/ANY RADAR~*™
Will describe the first four units

ALBC30 DESCRIBE/SUBUNIT RADAR* SI*
Will describe Radar_Screen.Object.Size

ALBC30 DESCRIBE/ANY %
Will describe Subprogram Spec A

ALBC30 DESCRIBE/SUBUNIT RADAR_DETECTOR *SIZE
Will not describe any unit

BETA RELEASE 1.0 4-5

USER MANUAL FOR TARTAN ADA VYMS C30

4.5. CLOSURE

Closure is defined as the total set of compilation units upon which a unit is dependent. Dependency is
conveyed by means of the context (with) clause: a library unit in a context ciause of a compilation unit must be
compiled before the compilation unit. Additionally, a library unit must be compiled before its corresponding
body (secondary unit), and a parent unit must be compiled before any of its subunits, These dependencies are
uansitve; that is, a library unit in the context clause of a library unit in a context ciause of a compilation unit is in
the compiiation unit’s closure, and so on. In other words, the collection of units that must be compiled before a
compilation unit is the closure of that compilation unit .

Another cause for dependencies arises from generics. A compilation unit that depends on a generic unit or a
unit that conwins generics is dependent on the body of that unit, if instantiations of the generic constructs occur.
While normally only library and parent units can be in the closure of a compilation unit, this special situation can
cause other secondary units to become part of the closure of a compilation unit (See aiso Section 5.9.2).

The closure of a compilation unit is consistent if all units in the closure of the compilation unit are in the
library, i.e., they have indeed been compiled in an order that does not violate the partial ordering determined by
the dependency relationships. Compilation units may be compiled in any order that is consistent with this partal
ordering.

The fundamental rule to be remembered is: A unit can be compiled only if its closure is consistent.

Examples:

1.

-~ Specification for package MODE3
package MODE3 is

éﬁd MODE3;
-- Specification for package FOE
with MQDE3;
package FOE is
end FOE:
-~ Specification for package MODE3
with FOE;
package MODE3 is
end MODE3;
The resubmission of package MODE3 is rejected. A circularity exists between the two package specifications that
violates the dependency rules given above:
* MODE3 has FOE in its context clause, which means FOE must be compiled before MODE3.
e FOE, in um, has MODE3 in its context clause, which means MODE3 must be compiled before FOE.
In other words, MODE3 would have to be compiled before MODE 3—an impossiblity.

2. If the following units are submitted to the compiler in the order shown, the closure of package body
CROSS_SECTION is consistent,

4-6 BETA RELEASE 1.0

PN

THE ADA PROGRAM LIBRARY

-- Specification for package FCE
package FOE is

end FQE;

-—- Specification for package FRIEND
package FRIEND is

end FRIEND;

-- Specification for package CROSS_SECTICN
package CROSS_SECTICN is

end CROSS_SECTION:

-- Body for package CROSS_SECTION
with FRIEND:;
with FOE; .
-- NCTE: The order expressed in the context clause is irrelevant
-- to the compilation order.
package body
CROSS_SECTION is

end CROSS_SECTION;
At this point, a recompilation of package FOE would cause the closure of package body CROSS_SZCTION to
become inconsistent.

The full closure of a unit is defined as the set of units in the unit's closure, their corresponding bodies and all
of their subunits, and the full closure of each of these units. Establishing the fuil closure is recursive because Ada
allows secondary units 10 have dependencies that are in addition to the dependencies of the corresponding library
unit or parent unit. Thus a secondary unit may bring additional library units and their bodies into the full closure.

The full closure of a compilaton unit is said 10 be consistent if all the units in the full closure of the
compilation unit are in the library and have been compiled in an order that does not violate the partial ordering
determined by their respective closures.

The fundamental rule to be remembered is: A unit constiruting a main program can be linked only if it has
been successfully compiled and its full closure is consistent. For a successful compilauon of the unit only a
consistent closure, but not a consistent full closure is required. -

Example:

The full closure of the unit CROSS_SECTION is consistent because all required compilation units have been
compiled into the library in a correct order.

BETA RELEASE 1.0 7

~SER MANUAL FOR TARTAN ADA VMS C20

-~ Specification for package FRIEND
package FRIEND is
end FRIEND;

-~ Body for package FRIEND
package body
FRIEND is

end FRIEND;

-~ Specification for package FQE
package FOE is
end FOE;
-- Body for package FOE
package -body
FOE is
end FOE;

~- Specification for package RADAR_DETECTOR
package RADAR DETECTOR is

end RADAR_DETECTOR:

-=- Body for package RADAR_DETECTOR
package body
RADAR_DETECTCR is

end RADAR_DETECTOR:

-- Specification £or package CROSS_SECTION
package CROSS_SECTICN is

end CROSS_SECTION;

-- Body for package CRCSS_SECTION
with FRIEND:;
with FQE:
package body
CROSS_SECTION is

end CROSS_SECTION;

4.6. THE CLOSURE SUBCOMMAND
The CLOSURE command checks the closure or full closure of a unit by displaying the partal ordering of its
closure.
The format of the CLOSURE command is
$ ALBC30 CLOSURE ({/qualifier...]) (Ada-name...]

where one or more Ada-name(s) supplied as parameters specify the unit or subunit whose closure is 1o be
checked. A qualifier may be supplied to further specify the unit(s) to be described or to request an additional
action (o be taken as part of the process,

The wildcard characters of "*" and "%" are recognized in an Ada-name. The character “*" matches any
sequence (including the empty sequence) of characters in an Ada-name. The character "%" maiches any single
character in an Ada-name. Wildcards are used to build regular expressions. When one of the qualifiers /BODY,

4-3 BETA RELEASE 1.0

&

——~

27 3
.

THE ADA PROGRAM LIBRARY

/SPEC, /FULL or /SUBUNIT is used. and a wildcard is present in the parameter supplied, the closure or full
closure of every compilation unit of the specified category in the library whose name matches the regular
expression will be checked.

The following command qualifiers may be used:

/BODY

/EULL

Checks closure only on the body unit named by the Ada-name parameter. The
Ada-name supplied as a parameter must be a library unit name. Format:

$ ALBC30 CLCSURE/BODY library-unit-name
Checks the full closure (linking closure) for the specification unit named by the
Ada-name parameter. The Ada-name must be a library unit name. Format

$ ALBC30 CLOSURE/FULL library-unit-name

/QUTPUT{=file-spec]

/SPEC

/SUBUNIT

Examples:

Places the output of this command in the file specified. If no file has been given, output
defaults to a file having the name CLCOSURE . TXT. The default output device is the
user’s terminal or log file (if invoked from a batch job).

Checks closure only on the specification umt named by the Ada-name parameter. The
Ada-name must be a library unit name. /SPEC is the default if no qualifier is supplied.
Format: ‘

$ ALBC30 CLOSURE/SPEC library-unit-name

Checks closure of a subunit which must be identified by two parameters, the name of the
ancestor and the simple name of the subunit (LRM 10.2]. Formac:
$ ALBC30 CLOSURE/SUBUNIT ancestor simple-name
Example: '
To check closure for:
separate (ONE.TWO.THREEZ.FCUR) -~ uniz CNE is ancestor
procedure FIVE is
begin
null;
end FIVE;
the command is
ALBC30 CLOSURE/SUBUNIT ONE FIVE

1. The ALBC30 CLOSURE/SPEC command displays the status of the specification of the library unit

DISPLAY_TARGETS.

$ ALBC30 CLOSURE/SPEC display_tzargets

displays

BETA RELEASE 1.0 49

USER MANUAL FOR TARTAN ADA VMS C30

Closure partial ordering at 16-JUL-1987 10:28:32.00 for
implicit Subprogram Spec display_targets

Error Type Unit
Package Spec paintscreen
Package Spec cross_section
Package Spec radar_detector
implicit Subprogram Spec display_targets

Info 6011: The £iles required for compiiation by implicit
Subprogram Spec display_targecs are consistent (10.3).

2. The AL3C30 CLOSURE/FULL command displays the partial ordering of the full ciosure of the body of
the library unit DISPLAY _TARGETS in a situation where the package body for PAINTSCREZN is obsolete.

S ALBC30 CLOSURE/FULL display_targets
displays
Full Closure partial ordering ac 16-JUL~-1987 10:28:32.00 for
implicit Subprogram Spec display_targets

Error 600S5S: recompilation of Package Spec paintscreen has made
dependent Package Body paintscreen obsolete (10.3 (5)).

Erzrorx Type Unitc

Package Spec paintscreen
Package Spec cross_section
Package Spec radar_deteczor

* implicit Subprogram Spec display_tazgets
Package Body paintscreen
Package Body cross_section
Package Body radar_detector
Subprogram 3ody display_ targets

Info 6009: The files required for linking by implicit Subprogram
Spec display_targets are not consistenc (10.3).

4.7. THE TOREIGN_30DY SUBCOMMAND

A subprogram written in another language can be called from an Ada program. Pragma FOREIGN_BCDY is
used to indicate that the body for a library unit that is a non-generic package specification is provided in the form
of an object module. This pragma allows subprograms within that package 0 be called from an Ada program.
See Section 5.1.2.2 for a description <f the use of and restrictions on pragma FOREIGN_BODY.

Prior w0 successful linkage, the body of the respective package must be provided to the library. The
FOREIGN_BODY command ailows the programmer (o inroduce a reference to the compiled boay of a package
(in an object file) into the library. The format of the FOREIGN_BCDY command is

ALBC30 FOREIGN_BODY Ada-name file-spec

where the parameter Ada-name specifies the unit within the library for which a body is being provided. The
parameter file-spec specifies the name of compiled package body or object library of subprogram bodies to be

410 BETA RELEASE 1.0

~—

THE ADA PROGRAM LIBRARY

used. A reference to this file specificaton (by means of the supplied Ada-name) will be entered into the current
Ada library. The file specification must contain the file name and type. No wildcard characiers are ailowed in
the file specification.

If a specification for a foreign body is deleted from the program library, the database entry for the body is also
deleted. The object file is nor deleted.
Example, The ALBC30 FOREIGN_BODY command repiaces the standard package adatime with a refer-
ence to a timing module wrizen in FORTRAN.
$ ALBC30 FOREIGN_BODY acdatime USZROl: [PROJECT]fortran_time.TOF

A pointer for this package in the file USER01 : (PROJECT] fortran_time. TOF has now been inserted in the
ADA. DB file.

4.8. THE LINK SUBCOMMAND

The LINK command checks that the unit within the library specified by the user has the legal form for a main
unit, checks all its dependencies, finds all required object files, and links the main program with its full closure
(See Secton 4.5) producing an executable image. The format of the LINK command is

$ ALBC30 LINK(/qualifier..] library-unit-name (/qualifier...]
where the parameter /ibrary-unit-name specifies the unit in the library 10 be made the main program and must be
supplied.

The ALBC30 LINK command calls the Tartan Linker which is documented in Objec: File Utilities for the
Tartan Ada VMS C30, Chapter 2. The output file from the Tartan linker is library-unit-name . XTQF.

The following qualifiers may be used with the ALBC30 LINK command:

/ALLOCATIONS Produce a link map showing the section allocations. This qualifier may be used only if
the Tartan Tool Set has been selected when creating the library (See Section 4.2).

/CONTROL=flle-spec
Specifies a file used to pass instructions and qualifiers to the Tool Set Assembler and
Linker programs. This file may be used to specify what Toolset components, commands
or versions of components are to be used in building the final program, No wildcard
characters are allowed in the file specification. See Tartan Ada Object File Uulities
Manuat, for information in linker congol files.

_ /EXECUTABLE [=file-spec] Controis the name of the executable image created by the Tool Set linker. The
default file name is that of the main program. No wildcard characters are allowed in the
file specification.

/KEE? Retain the elaboration order and link control files after the linking operation is complete.
The program may then be relinked using The Taran Linker, TLINK, independent of the
librarian (See The Tartan Object File Utilities Manual, Chapter 2). This method is
primarily a debugging wol. The user assumes full responsibility for the consistency of
the program when it is used instead of using the ALBC30 LINK command.

. MAP Produce a link map containing ail information except the unused section listings.

/RESOLVEMODULES
Include all sections from the specified modules in the link. This action corresponds to
the "usual” behavior of other linkers. Some linker analysis is eliminated at the expense
of a (possibiy) larger output module.

/SYMBOLS Produce a link map showing global and extemal symbols.
/UNUSED Prodace a link map showing the unused sections.

BETA RELEASE 1.0 411

